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ABSTRACT
Sparsity inducing penalizations are useful tools in variational
methods for machine learning. In this paper, we design a
learning algorithm for multiclass support vector machines that
allows us to enforce sparsity through various nonsmooth reg-
ularizations, such as the mixed `1,p-norm with p ≥ 1. The
proposed constrained convex optimization approach involves
an epigraphical constraint for which we derive the closed-form
expression of the associated projection. This sparse multiclass
SVM problem can be efficiently implemented thanks to the
flexibility offered by recent primal-dual proximal algorithms.
Experiments carried out for handwritten digits demonstrate
the interest of considering nonsmooth sparsity-inducing reg-
ularizations and the efficiency of the proposed epigraphical
projection method.

Index Terms— Convex optimization, SVM, sparsity, epi-
graphical projection, proximal methods

1. INTRODUCTION

Support vector machines (SVMs) have gained much popularity
in solving large-scale classification problems, thanks to their
excellent performance and their ability to efficiently deal with
large datasets. In order to predict the class z ∈ {1, . . . ,K}
that best matches an observation u ∈ RN (e.g. a signal, an
image or a graph), SVMs rely on a discriminant function
D : RN × {1, . . . ,K} 7→ R which is built from a set of L
input-output pairs S =

{
(u(`), z(`)) ∈ RN×{1, . . . ,K} | ` ∈

{1, . . . , L}
}

. This function aims at partitioning the observa-
tion space into K regions (one for each expected class) and
it is estimated so that the separating hyperplanes maximize
the distance to the nearest training point of any class. Such a
maximum-margin principle was originally formulated in [1]
for K = 2 and then generalized in [2] for K ≥ 2.

Most of the applications considered in the literature deal
with a large amount of training data [3, 4] or a huge (even infi-
nite) number of classes [5]. Consequently, the major difficulty
encountered in this kind of applications stems from the compu-
tational cost. On the other hand, in some applications, only a
small number of training data is available. This is undoubtedly

true in medical contexts, where the goal is to classify a patient
as “being in good health”, “being contaminated”, or “being
infected”, but the verified cases of infected patients might be
just a few. In such applications, the lack of training data may
lead to the so-called overfitting, eventually leading to a predic-
tion which is too strongly tailored to the particularities of the
training set and poorly generalizes to new data.

Formally, the discriminant function is assumed to be lin-
ear in some combined feature representation of inputs and
outputs [6]. This assumption leads to(
∀(u, z) ∈ RN × {1, . . . ,K}

)
D(u, z) = x>Ψ(u, z),

where, for every z ∈ {1, . . . ,K}, Ψ(·, z) : RN → RMK is
such that x>Ψ(u, z) = (x(z))>φ(u), the function φ : RN →
RM denotes a mapping1 from the input space RN onto an
arbitrary feature space RM , and x = (x(z))1≤z≤K ∈ RMK

denotes the vector to be estimated, block decomposed into
vectors x(z) ∈ RM with z ∈ {1, . . . ,K}.

Related works. The multiclass SVM proposed in [2] amounts
to solving the following convex optimization problem

minimize
(x,ξ)∈RMK×RL

1

2
‖x‖2 + λ

L∑
`=1

ξ(`) subj. to


(∀` ∈ {1, . . . , L})(∀j ∈ {1, . . . ,K − 1})

x>w(`,j) ≥ 1− ξ(`),
(∀` ∈ {1, . . . , L}) ξ(`) ≥ 0,

(1)

where ξ = (ξ(`))1≤`≤L is the vector of slack variables, λ > 0
is a regularization constant, while for every ` ∈ {1, . . . , L},

(w(`,j))1≤j≤K−1 =
(

Ψ(u(`), z)−Ψ(u(`), z(`))
)
z∈{1,...,K}\{z(`)}

.

The above problem was solved in [2] by using standard La-
grangian duality techniques. While the dual formulation brings
in several advantages (e.g. the kernel trick [7]), the problem

1The mapping φ allows one to fit the maximum-margin hyperplanes in
a transformed feature space, where the observations are more likely to be
linearly separable.
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size becomes prohibitive when the number of classes is high.
Hence, recent works [5, 8] proposed to approximate the dual
problem using cutting plane approaches, in order to address
scenarios with thousands or even an infinite number of classes.

Since the features are not equally informative, a common
solution to prevent overfitting consists of imposing a sparsity
condition on the vector x. In this respect, the `1-norm and,
more generally, the mixed `1,p-norm have proven to be useful
in several machine-learning applications [9, 10, 11]. However,
when a nonsmooth penalty is substituted for the `2-norm, the
dual formulation becomes non trivial. For this reason, when
sparse classification is proposed, the maximum-margin princi-
ple is equivalently formulated by using the hinge loss function
[12, 13, 14, 15]. A different approach for sparse classification
consists of replacing the hinge loss with other types of loss
functions, such as the logistic loss [16, 13, 17]. All these solu-
tions aim at simplifying the optimization procedure, but they
do not solve rigorously (1) with a sparse penalization.

Contributions. In this work, we propose an efficient solution
to exactly solve (1) in the case when the `2-norm is replaced
by any convex, lower semi-continuous, and proper function
g from RMK to ]−∞,+∞]. The only assumption required
by our method is that the proximity operator [18] of g can be
calculated explicitly. This is certainly the case for the mixed
`1,p-norm with p ∈ {1, 2,+∞} [19, 20, 21]. The paper is
organized as follows. In Section 2, we formulate the multi-
class problem in terms of nonlinear epigraphical constraints, in
Section 3 we provide the proximal tools and the epigraphical
projection needed to solve the proposed problem, and in Sec-
tion 4 we compare our solution with the conventional `2-SVM
on a standard database.

Notation. Γ0(RN ) denotes the set of proper, lower semicontin-
uous, convex functions from RN to ]−∞,+∞]. The epigraph
of ϕ ∈ Γ0(RN ) is the nonempty closed convex subset of
RN × R defined as epiϕ =

{
(y, ζ) ∈ RN × R

∣∣ ϕ(y) ≤ ζ
}

.
For every y ∈ RN , the proximity operator of ϕ is proxϕ(y) =
argminu∈RN ‖u − y‖2 + ϕ(u) and the projection onto a
nonempty closed convex subset C ⊂ RN is PC(y) =
proxιC (y) = argminu∈C ‖u − y‖2, where ιC is the indi-
cator function of C, equal to 0 on C and +∞ otherwise.

2. SPARSE MULTICLASS SVM

We extend Problem (1) by replacing the `2-norm regularization
with a generic function g ∈ Γ0(RMK) and by considering a
constrained structural-risk minimization. To do so, for every
` ∈ {1, . . . , L}, we introduce the function

(∀y(`) = (y(`,j))1≤j≤K−1 ∈ R(K−1))

h(`)(y(`)) = max
1≤j≤K−1

y(`,j) + µ, (2)

where y(`,j) = −x>w(`,j) and µ is a positive constant that
allows us to model the margin-rescaling criterion in [22]. Con-

sequently, in order to estimate the vector x from the training
data in S, we aim at solving the convex problem:

minimize
(x,ξ)∈RMK×RL

g(x) subj. to
ξ(1) + · · ·+ ξ(L) ≤ η,
(∀` ∈ {1, . . . , L}) h(`)(y(`)) ≤ ξ(`),
(∀` ∈ {1, . . . , L}) ξ(`) ≥ 0,

(3)

where η is a positive constant. Note that the above decompo-
sition yields the same reformulation of Problem (1) as con-
sidered in [2], except for the function g and the half-space
constraint over the slack vector. Indeed, the above constrained
formulation is equivalent to Problem (1) for some specific val-
ues of η and λ, but the constrained one allows us to control
more easily the effect of slack variables. The advantage of the
constrained formulation is that the choice of η may be easier,
since it is directly related to the properties of training data.

The function g is chosen so as to prefer a simple solution
rather than a complex one. This condition is typically achieved
by promoting a sparse solution. Sparsity can be enforced
with different regularization functions. A popular example
is the `1-norm [9], which is known to induce sparsity: the
solution will have a number of coefficients exactly equal to
zero, depending on the strength of the regularization. Another
example is given by the mixed `1,p-norm [9], defined for each
x = (x(z))1≤z≤K ∈ RMK which is block-decomposed, for
every z ∈ {1, . . . ,K}, as x(z) = [x(z,1)> . . . x(z,B)>]> ∈ RM :

‖x‖1,p =

K∑
z=1

B∑
b=1

‖x(z,b)‖p. (4)

The mixed-norm is known to induce block-sparsity: the solu-
tion is partitioned into groups and the variables of each group
are ideally either all zeros or all non-zeros. In this context,
the exponent values p = 2 or p = +∞ are the most popular
choices. In particular, the `1,∞-norm tends to favour solutions
with many components of equal magnitude.

3. ALGORITHMIC SOLUTION

Within the proposed constrained optimization framework, a
possible reformulation of Problem (3) is the following:

minimize
(x,ξ)∈RMK×V

g(x) subj. to (Wx, ξ) ∈ E, (5)

where W ∈ RL(K−1)×MK is the linear operator such that

Wx = y = (y(`))1≤`≤L, (6)

the set V denotes the simplex

V =
{
ξ ∈ [0,+∞[

L ∣∣ ξ(1) + · · ·+ ξ(L) ≤ η
}
, (7)

and the set E is a collection of epigraphs

E =
{

(y, ξ) ∈ RL(K−1) × RL
∣∣

(∀` ∈ {1, . . . , L}) (y(`), ξ(`)) ∈ epih(`)
}
. (8)
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3.1. Epigraphical projection

The advantage of the epigraphical decomposition is that the
projections PE and PV onto E and V have closed-form ex-
pressions. Indeed, the projection PV is given in [23], while
the projection PE is block-decomposed as

PE(y, ξ) =
(
Pepih(`)(y(`), ξ(`))

)
1≤`≤L

, (9)

where, for every (y(`), ξ(`)) ∈ RK−1 × R, Pepih(`)(y(`), ξ(`))
denotes the solution of

min
(p(`),θ(`))∈epih(`)

‖p(`) − y(`)‖2 + (θ(`) − ξ(`))2 (10)

which is equivalent to find

min
θ(`)∈R

{
(θ(`) − ξ(`))2 + min

p(`,1)≤θ(`)−µ
...

p(`,K−1)≤θ(`)−µ

‖p(`) − y(`)‖2
}
.

For every θ(`) ∈ R, the inner minimization is achieved when,
for every j ∈ {1, . . . ,K − 1}, p(`,j) is the projection of y(`,j)

onto the real interval ] −∞, θ(`) − µ]. Consequently, Prob-
lem (10) reduces to

min
θ(`)∈R

{
(θ(`) − ξ(`))2 +

K−1∑
j=1

(max{y(`,j) + µ− θ(`), 0})2
}

which is also equivalent to calculate, at the point ξ(`), the
proximity operator [18] of the following convex function:

(∀v ∈ R) ϕ(v) =
1

2

K−1∑
j=1

(max{y(`,j) + µ− v, 0})2.

(11)
The closed form expression of this proximity operator is given
by [24, Proposition II.8] and it is summarized in the following
proposition.

Proposition 3.1. Let
(
ν(`,j)

)
1≤j≤K−1

be a sequence ob-
tained by sorting

(
y(`,j) + µ

)
1≤j≤K−1

in ascending order,
and set ν(`,0) = −∞ and ν(`,K) = +∞. Then, for every
(y(`), ξ(`)) ∈ RK−1 × R, the projection Pepih(`)(y(`), ξ(`)) =

(p(`), θ(`)) is such that p(`) = (p(`,j))1≤j≤K−1 with, for every
j ∈ {1, . . . ,K − 1},

p(`,j) =

{
y(`,j), if y(`,j) ≤ θ(`) − µ,
θ(`) − µ, otherwise,

(12)

and

θ(`) =
1

K − j(`) + 1

ξ(`) +

K−1∑
j=j

(`)

ν(`,j)

 , (13)

where j
(`)

is the unique integer in {1, . . . ,K} such that

ν(`,j
(`)−1) < θ(`) ≤ ν(`,j

(`)
) (14)

(with the convention
∑K−1
j=K · = 0).

3.2. Proposed algorithm

The solution of (5) requires an efficient algorithm for dealing
with nonsmooth functions. We resort here to proximal algo-
rithms. Among the large panel of existing proximal algorithms
[25, 26, 27], we consider the primal-dual M+LFBF algorithm
recently proposed in [27], which is able to address general
convex optimization problems involving nonsmooth functions
and linear operators without requiring any matrix inversion.
This algorithm is able to solve:

minimize
v∈H

φ(v) +

Q∑
i=1

ψi(Tiv) (15)

where H is a real Hilbert space, φ : H 7→ ]−∞,+∞] is
a proper convex lower-semicontinuous function, for every
i ∈ {1, . . . , Q}, Ti : H 7→ RSi is a bounded linear opera-
tor and ψi : RSi 7→ ]−∞,+∞] is a proper convex lower-
semicontinuous function.

Our minimization problem fits nicely into this framework
by setting H = RMK × RL, v = (x, ξ), Q = 1 and S1 =
L(K − 1) +MK. The linear operator is

T1 =

[
W 0
0 Id

]
and the functions are the following ones:

(∀(x, ξ) ∈ RMK × RL) φ(x, ξ) = g(x) + ιV (ξ),

(∀(y, ξ) ∈ RL(K−1) × RL) ψ1(y, ξ) = ιE(y, ξ).

The iterations associated with Problem (3) are summarized
in Algorithm 1, where the sequence (x[i])i∈N is guaranteed
to converge to a solution to (3), provided that such a solution
exists [27].

Algorithm 1 M+LFBF for solving Problem (3)

Initialization
(y[0], ν[0]) ∈ RL(K−1) × RL

(x[0], ξ[0]) ∈ RMK × RL
β = max{‖W‖, 1}
ε ∈]0, 1/(β + 1)[

For i = 0, 1, . . .

γi ∈ [ε, (1− ε)/β](
p[i], ρ[i]

)
=
(

proxγig(x
[i] − γiW>y[i]), PV (ξ[i] − γiν[i])

)(
ŷ[i], ν̂[i]

)
=
(

y[i], ν[i]
)

+ γi
(
W x[i], ξ[i]

)(
a[i], α[i]

)
=
(

ŷ[i], ν̂[i]
)
− γiPE

(
ŷ[i]/γi, ν̂

[i]/γi
)(

y[i+1], ν[i+1]
)

=
(

a[i], α[i]
)

+ γi
(
W (p[i] − x[i]), ρ[i] − ξ[i]

)(
x[i+1], ξ[i+1]

)
=
(

p[i], ρ[i]
)
− γi

(
W>(a[i] − y[i]), α[i] − ν[i]

)
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3.3. Formulation based on linear constraints

At this point, we would like to emphasize that more standard
formulations of Problem (3) are possible. For example, one
may naturally think of introducing a vector ζ ∈ RL(K−1) and
rewrite the inequalities in Problem (3) in terms of an extended
number of linear constraints

(∀` ∈ {1, ..., L})(∀j ∈ {1, ...,K − 1}) ζ(`,j) ≥ 0,

(∀` ∈ {1, ..., L})(∀j ∈ {1, ...,K − 1}) y(`,j) + µ ≤ ζ(`,j),
(∀` ∈ {1, ..., L}) ζ(`,1) = · · · = ζ(`,K−1),

L∑
`=1

K−1∑
j=1

ζ(`,j) ≤ (K − 1) η.

(16)
In this regard, we will show in Section 4 that the proposed

epigraphical reformulation converges much faster than the
solution based on linear constraints.

4. NUMERICAL RESULTS

We perform our experimental analysis with an example of
handwritten digit classification. More precisely, we consider
the MNIST database,2 which contains a large number of
grayscale images displaying handwritten digits from 0 to 9.
The images were size-normalized to fit into a 20 × 20 pixel
box, and then centered in a 28× 28 image [28]. The database
is organized in 60000 training images and 10000 test images.

In our experiments, we scaled the image dynamics
range to the interval [0, 1] by dividing the pixel intensi-
ties by 255. Moreover, we selected L image-class pairs
(u(`), z(`))1≤`≤L ∈ R282 ×Z from the training set, with Z =

{1, . . . , 10}, and we defined the mapping φ : R282 7→ RM
by resorting to the scattering convolution network recently
proposed in [29], using m = 2 wavelet layers scaled up to
2J = 4, yielding M = 15876.

We evaluated the impact of the regularization over the
performance obtained with the considered multiclass SVM and
we compared it with the sparse multinomial logistic regression
[17]. For SVM, we set µ ≡ 1 in (2) and, for the regularization,
we considered the `2-norm and the `1,∞-norm, which recently
gained much attention in learning tasks [10, 11]. To evaluate
the quality of the estimated vector x ∈ R10M , we collected
in Table 1 the misclassification errors obtained by evaluating
the prediction dx(u) = argmaxz∈{1,...,K} x>Ψ(u, z) on the
10000 test images. The results indicate that the block-sparse
`1,∞-norm regularization makes a significant difference in the
case when a few examples are available for training.

In Fig. 1, we show that the epigraphical approach (solid
blue line) leads to a faster convergence (about 4 times) than
a more standard technique for handling linear constraints
(dashed red line). The results refer to the case L = 100 with

2available at http://yann.lecun.com/exdb/mnist

L/K `2-SVM `1,∞-SVM `1-logit [17]

3 27.06 % 25.64 % 28.14 %
5 16.32 % 13.59 % 15.48 %

10 11.00 % 9.40 % 10.42 %
15 10.12 % 7.68 % 8.75 %
20 7.78 % 5.67 % 6.18 %
30 6.48 % 5.46 % 5.69 %
50 4.22 % 3.73 % 3.92 %

100 3.69 % 3.13 % 3.34 %

Table 1. Classification errors obtained by using different regu-
larizations within the considered multiclass SVM.

0 50 100 150 200 250 300

10
−8

10
−6

10
−4

10
−2

10
0

Fig. 1. Relative error ‖x[n] − x[∞]‖/‖x[∞]‖ vs computational
time (in seconds), where x[∞] denotes the solution computed
after a large number (10000) of iterations. Red line: approach
with linear constraints. Blue line: epigraphical approach.

`2-norm regularization. Our codes were completely developed
in MATLAB and all the programs executed on an Intel Xeon
CPU X5690 at 3.47 GHz and 24 GB of RAM.

5. CONCLUSIONS

We have proposed a new epigraphical technique for solving
constrained convex optimization problems arising in machine
learning with support vector machines. In particular, the epi-
graphical splitting allows us to handle the multiclass maximum-
margin loss function without resorting to Lagrangian duality
techniques, hence adding more flexibility in the choice of the
regularization function. The obtained results demonstrate the
advantages of using nonsmooth sparsity-inducing regulariza-
tion in this context. More specifically, we have shown that the
`1,∞-norm constitutes a good choice for preventing overfitting
in the case when just a few training examples are available.
Furthermore, our experiments indicate that the epigraphical
method converges much faster than the solution based on stan-
dard techniques for handling linear constraints.
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