
A QUASI-NEWTON METHOD FOR LARGE SCALE SUPPORT VECTOR MACHINES

Aryan Mokhtari and Alejandro Ribeiro

Department of Electrical and Systems Engineering, University of Pennsylvania

ABSTRACT

This paper adapts a recently developed regularized stochastic version
of the Broyden, Fletcher, Goldfarb, and Shanno (BFGS) quasi-Newton
method for the solution of support vector machine classification problems.
The proposed method is shown to converge almost surely to the optimal
classifier at a rate that is linear in expectation. Numerical results show that
the proposed method exhibits a convergence rate that degrades smoothly
with the dimensionality of the feature vectors.

1. INTRODUCTION

Given a training set with points whose class is known the goal of a support
vector machine (SVM) is to find a hyperplane that best separates the train-
ing set. If future samples are statistically identical to the training set this
hyperplane provides the best classification accuracy. Computation of the
separating hyperplane entails solution of a convex optimization problem
that can be implemented without much difficulty in problems of moder-
ate size [1]. Large scale problems in which the dimension of the points
to be classified is large require a commensurably large training set. In
these situations, computing the gradients that are required for numerical
determination of the separating hyperplanes becomes infeasible and moti-
vates the use of stochastic gradient descent methods which build unbiased
gradient estimates based on small data subsamples [1–4].

However practical, stochastic gradient descent methods need a large
number of iterations to converge. This translates into the need of very
large training sets, or, since the size of the training set is in general lim-
ited by data collection, in the computation of hyperplanes that are not
as good classifiers as they could be given the available data. In this pa-
per we resort to quasi-Newton methods [5–12] to make better use of the
provided training set. In particular, we adapt a recently developed regu-
larized stochastic version of the Broyden, Fletcher, Goldfarb, and Shanno
(BFGS) method [9] for the solution of SVM classification problems (Sec-
tion 2). The proposed method is shown to converge almost surely over
realizations of the training set to the optimal classifier (Theorem 1) at a
rate that is linear in expectation (Theorem 2). Numerical results show that
the method exhibits a convergence time that degrades smoothly with the
dimensionality of the feature vectors. (Section 4).

2. STOCHASTIC QUASI-NEWTON METHOD

Consider a training set S = {(xi, yi)}Ni=1 containing N pairs of the form
(xi, yi), where xi ∈ Rn is a feature vector and yi ∈ {−1, 1} the cor-
responding vector’s class. We want to find a hyperplane supported by a
vector w ∈ Rn which separates the training set so that wTxi > 0 for all
points with yi = 1 and wTxi < 0 for all points with yi = −1. Since
this vector may not exist if the data is not perfectly separable we introduce
the loss function l((x, y);w) measuring the distance between the point xi

and the hyperplane supported by w and proceed to select the hyperplane
supporting vector as the one with minimum aggregate loss

w∗ := argmin
λ

2
‖w‖2 +

1

N

N∑
i=1

l((xi, yi);w), (1)

where we also added the regularization term λ‖w‖2/2 for some constant
λ > 0. The vector w∗ in (1) balances the minimization of the sum of
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distances to the separating hyperplane, as measured by the loss function
l((x, y);w), with the minimization of the L2 norm ‖w‖2 to enforce de-
sirable properties in w∗ [13]. Common selections for the loss function are
the squared hinge loss l((x, y);w) = max(0, 1− y(wTx))2 and the log
loss l((x, y);v) = log(1 + exp(−y(wTx))), e.g. [1].

To model (1) as a stochastic optimization problem let θi := (xi, yi)
be a given training point and consider a uniform probability distribution
on the training set S = {(xi, yi)}Ni=1 = {θi}Ni=1. Upon defining the
function f(w,θ) := λ‖w‖2/2 + l((xi, yi);w) we can rewrite (1) as

w∗ := argmin
w

Eθ[f(w,θ)] := argmin
w

F (w). (2)

In (2), we (re-)interpret the sum in (1) as an expectation over the uniform
discrete distribution on the set S. We refer to f(w,θ) as the instantaneous
functions and to F (w) := Eθ[f(w,θ)] as the average function.

Since the loss functions l((xi, yi);w) are convex, the functions
f(w,θ) := λ‖w‖2/2 + l((xi, yi);w) are strongly convex. Thus, the
average objective F (w) in (2) is also strongly convex and the optimal
separating hyperplane w∗ can be found by stochastic gradient descent
algorithms. However, the number of iterations required to run these al-
gorithms, which translates to the number of training features (xi, yi) that
need to be acquired, becomes prohibitive for large dimensional problems.
To reduce the number of iterations required for convergence we develop a
regularized stochastic version of the BFGS method.

To be precise let t ≥ 0 be an iteration index and assume that at time t
we are given a sample of L realizations of the random variables θ. Group
these samples in the vector θ̃t := [θt1; ...;θtL] and let wt denote the
current hyperplane normal vector iterate. We then define the stochastic
gradient of F (w) associated with samples θ̃t at point wt as

ŝ(wt, θ̃t) =
1

L

L∑
l=1

∇f(wt,θtl). (3)

Further introduce a step size sequence εt, a positive definite curvature ap-
proximation matrix B̂t, and a regularization constant Γ > 0. The regular-
ized stochastic BFGS algorithm is then defined by the iteration

wt+1 = wt − εt
(
B̂−1

t + ΓI
)

ŝ(wt, θ̃t). (4)

The update in (4) proceeds along the negative stochastic gradient direction
−ŝ(wt, θ̃t) premultiplied by the positive definite matrix B̂−1

t + ΓI and
modulated by the step size εt.

For the algorithm in (4) to have better convergence properties than
gradient descent we need the matrix B̂t to approximate the Hessian of
the objective function H(wt) := ∇2F (wt) so that (4) approximates an
stochastic version of Newton’s method – the role of ΓI is to provide a
guarantee of minimum progress as we discuss in the convergence analysis
in Section 3. To define such approximation we use a stochastic version
of the secant condition used in deterministic BFGS. Start by defining the
variable and stochastic gradient variations at time t as

vt := wt+1 −wt, r̂t := ŝ(wt+1, θ̃t)− ŝ(wt, θ̃t), (5)

respectively, and select the matrix B̂t+1 to be used in the next time step
so that it satisfies the secant condition B̂t+1vt = r̂t. The rationale for
this selection is that the Hessian H(wt) satisfies this condition for wt+1

tending to wt. Notice however that the secant condition B̂t+1vt = r̂t
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is not enough to completely specify B̂t+1. To resolve this indeterminacy,
matrices B̂t+1 in BFGS are also required to be as close as possible to B̂t

in terms of minimizing the Gaussian differential entropy,

B̂t+1 = argmin
Z

tr
[
B̂−1

t Z
]
− log det

[
B̂−1

t Z
]
− n,

s. t. Zvt = r̂t, Z � 0. (6)

The constraint Z � 0 restricts the feasible space to positive semidefinite
matrices whereas the constraint Zvt = r̂t requires Z to satisfy the secant
condition. The objective tr(B̂−1

t Z)− log det(B̂−1
t Z)−n is the differen-

tial entropy between Gaussian variables with covariances B̂t and Z.
Observe that B̂t+1 stays positive definite as long as the matrix B̂t �

0 is positive definite, e.g. [10]. However, it is possible for the smallest
eigenvalue of B̂t to become arbitrarily close to zero which means that the
largest eigenvalue of B̂−1

t becomes very large. To avoid this problem we
introduce a regularization of (6) that requires the smallest eigenvalue of
B̂t+1 to be larger than a positive constant δ,

B̂t+1 = argmin
Z

tr
[
B̂−1

t (Z− δI)
]
− log det

[
B̂−1

t (Z− δI)
]
− n,

s. t. Zvt = r̂t, Z � 0. (7)

Since the logarithm determinant log det[B̂−1
t (Z − δI)] diverges as the

smallest eigenvalue of Z approaches δ, the smallest eigenvalue of the Hes-
sian approximation matrices B̂t+1 computed as solutions of (7) exceeds
the lower bound δ. Thus, the largest eigenvalue of B̂−1

t+1 is bounded above
by 1/δ. The following lemma shows that solutions of (7) can be computed
by a simple algebraic formula (see [14] for proofs of results in this paper).

Lemma 1 Consider the semidefinite program in (7) where the matrix
B̂t � 0 is positive definite and define the corrected gradient variation

r̃t := r̂t − δvt, (8)

If r̃Tt vt = (r̂t− δvt)
Tvt > 0, the solution B̂t+1 of (7) can be written as

B̂t+1 = B̂t +
r̃tr̃

T
t

vT
t r̃t
− B̂tvtv

T
t B̂t

vT
t B̂tvt

+ δI. (9)

When δ = 0 the update in (9) coincides with standard non-regularized
BFGS [7, 10, 11, 15]. Therefore, the differences between BFGS and regu-
larized BFGS are the replacement of the gradient variation r̂t by the cor-
rected variation r̃t := r̂t− δvt and the addition of the regularization term
δI. Notice that the expression in (9) is the solution to (7) only when the
inner product r̃Tt vt = (r̂t − δvt)

Tvt > 0.

2.1. Regularized stochastic BFGS support vector machines

To solve the SVM problem in (1) using regularized stochastic BFGS we
need the stochastic gradient in (3). For that, select a sample of L feature
vectors x̃ = [x1; ...;xL] and corresponding classes ỹ = [y1; ...; yL] from
the training set and compute the stochastic gradient as [cf. (3)]

ŝ(w, (x̃, ỹ)) = λw +
1

L

L∑
i=1

∇w l((xi, yi);w). (10)

Start at time t with current iterate wt and recall that B̂t stands for the
Hessian approximation computed by stochastic BFGS in the previous it-
eration. Proceed to collect feature vectors x̃t = [xt1; ...;xtL] and their
corresponding class vectors ỹt = [yt1; ...; ytL] and for each pair (x̃t, ỹt)
determine the stochastic gradients ŝ(wt, (x̃t, ỹt)) as per (10). Descend
then along the direction (B̂−1

t + ΓI) ŝ(wt, (x̃t, ỹt)) as per (4). This
leads to the next iterate wt+1, but to complete the iteration we still need
to compute the updated Hessian approximation B̂t+1. To do so compute
the stochastic gradient ŝ(wt+1, (x̃t, ỹt)) associated with the same set of

Algorithm 1 Regularized stochastic BFGS support vector machines

Require: Variable w0. Hessian approximation B̂0 � δI.
1: for t = 0, 1, 2, . . . do
2: Collect L training points x̃t = [xt1, . . . ,xtL] and ỹt = [yt1, . . . , ytL]
3: Compute stochastic gradient ŝ(wt, (x̃t, ỹt)) [cf. (10)].

ŝ(wt, (x̃t, ỹt)) = λwt +
1

L

L∑
i=1

∇wl((xti, yti);wt).

4: Descend along direction (B̂−1
t + ΓI) ŝ(wt, (x̃t, ỹt)) [cf. (4)]

wt+1 = wt − εt (B̂−1
t + ΓI) ŝ(wt, (x̃t, ỹt)).

5: Compute ŝ(wt+1, (x̃t, ỹt)) [cf. (10)]

ŝ(wt+1, (x̃t, ỹt)) = λwt+1 +
1

L

L∑
i=1

∇w l((xti, yti);wt+1).

6: Variable and modified stochastic gradient variations [cf. (5) and (8)]

vt = wt+1 −wt,

r̃t = ŝ(wt+1, (x̃t, ỹt))− ŝ(wt, (x̃t, ỹt))− δvt

7: Update Hessian approximation matrix [cf. (9)]

B̂t+1 = B̂t +
r̃tr̃Tt
vT
t r̃t
−

B̂tvtvT
t B̂t

vT
t B̂tvt

+ δI.

8: end for

random data points samples (x̃t, ỹt) used to compute the stochastic gra-
dient ŝ(wt, (x̃t, ỹt)). The stochastic gradient variation r̂t, the variable
variation vt, and the modified stochastic gradient variation r̃t at time t
are now computed using (5) and (8). The Hessian approximation B̂t+1

for the next iteration is defined as the matrix that satisfies the stochastic
secant condition B̂t+1vt = r̂t and is closest to B̂t in the sense of (7). As
per Lemma 1 we can compute B̂t+1 using (9).

The solution of (1) using regularized stochastic BFGS is summarized
in Algorithm 1. The two core steps in each iteration are the descent in
Step 4 and the update of the Hessian approximation B̂t in Step 8. Step
2 comprises the observation of L pairs of data points and feature vectors
that are required to compute the stochastic gradients in steps 3 and 5. The
stochastic gradient ŝ(wt, (x̃t, ỹt)) in Step 3 is used in the descent itera-
tion in Step 4. The stochastic gradient of Step 3 along with the stochastic
gradient ŝ(wt+1, (x̃t, ỹt)) of Step 5 are used to compute the variations in
steps 6 and 7 that permit carrying out the update of the Hessian approx-
imation B̂t in Step 8. Iterations are initialized with arbitrary vector w0

and matrix B̂0 having all eigenvalues larger than δ.

3. CONVERGENCE ANALYSIS

Our goal here is to show that as time progresses the sequence of classifiers
wt approaches the optimal classifier w∗. In proving this result we make
the following assumptions.

Assumption 1 For any set of samples θ̃ = [θ1, . . . ,θL] the instanta-
neous functions f̂(w, θ̃) := (1/L)

∑L
l=1 f(w,θl) are twice differen-

tiable and their Hessians Ĥ(w, θ̃) = ∇2
wf̂(w, θ̃) have lower and upper

bounded eigenvalues,

m̃I � Ĥ(w, θ̃) � M̃I. (11)

Assumption 2 There exists a constant S2 such that for all variables w
the second moment of the norm of the stochastic gradient satisfies

Eθ

[
‖ŝ(wt, θ̃t)‖2

]
≤ S2, (12)

Assumption 3 The regularization constant δ is smaller than the smallest
Hessian eigenvalue m̃, i.e., δ < m̃.
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Fig. 1. Convergence of stochastic gradient descent and regularized
stochastic BFGS for feature vectors of dimension n = 4. Convergence
of stochastic BFGS is faster than convergence of stochastic gradient de-
scent (sample size L = 5; stepsizes εt = ε0τ/(τ + t) with ε0 = 3×10−2

and τ = 102; stochastic BFGS parameters δ = 10−3 and Γ = 10−4).

Recall that according to Lemma 1 the update in (9) is a solution to (7)
as long as the inner product (r̂t − δvt)

Tvt = r̃Tt vt > 0 is positive. Our
first result is to show that selecting δ < m̃ as required by Assumption 3
guarantees that this inequality is satisfied for all times t.

Lemma 2 Consider the modified stochastic gradient variation r̃t defined
in (8) and the variable variation vt defined in (5). If assumptions 1 and 3
are true, then, for all times t it holds

r̃Tt vt = (r̂t − δvt)
Tvt ≥ (m̃− δ)‖vt‖2 > 0. (13)

The result in Lemma 2 guarantees that the regularized stochastic
BFGS algorithm as defined by recursive application of (4), (5), (8), and
(9) results in matrices B̂t that solve (7). In particular, this implies that
B̂t is positive definite with smallest eigenvalue not smaller than δ, i.e.,
B̂t � δI. This implies that all the eigenvalues of B̂−1

t are between 0 and
1/δ and that, as a consequence, the matrix B̂−1

t + ΓI is such that

ΓI � B̂−1
t + ΓI � (Γ +

1

δ
)I. (14)

Having matrices B̂−1
t + ΓI that are strictly positive definite with eigen-

values uniformly upper bounded by Γ + (1/δ) leads to the conclusion
that if ŝ(wt, θ̃t) is a descent direction, the same holds true of (B̂−1

t +

ΓI) ŝ(wt, θ̃t). The stochastic gradient ŝ(wt, θ̃t) is not a descent di-
rection in general, but we know that this is true for its conditional ex-
pectation E[ŝ(wt, θ̃t)

∣∣wt] = ∇wF (wt). Therefore, we conclude that
(B̂−1

t + ΓI)ŝ(wt, θ̃t) is an average descent direction because E[(B̂−1
t +

ΓI) ŝ(wt, θ̃t)
∣∣wt] = (B̂−1

t + ΓI)∇wF (wt). Having a displacement
wt+1 − wt that is a descent direction on average implies convergence
towards optimal arguments as we claim in the following theorem.

Theorem 1 Consider the regularized stochastic BFGS algorithm as de-
fined by (4), (5), (8), and (9). If assumptions 1-3 hold true and the se-
quence of stepsizes satisfies is nonsummable but square summable, i.e.,
if
∑∞

t=0 εt = ∞, and
∑∞

t=0 ε
2
t < ∞, the limit infimum of the squared

Euclidean distance to optimality ‖wt −w∗‖2 satisfies

lim inf
t→∞

‖wt −w∗‖2 = 0 a.s. (15)

over realizations of the random samples {θ̃t}∞t=1.

Theorem 1 establishes convergence of the stochastic regularized
BFGS algorithm summarized in Algorithm 1. In the proof of this result
the lower bound in the eigenvalues of B̂t enforced by the regularization
in (9) plays a fundamental role. Roughly speaking, the lower bound in
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Fig. 2. Convergence of stochastic gradient descent and regularized
stochastic BFGS for feature vectors of dimension n = 40. Stochastic
BFGS is still practicable whereas stochastic gradient descent becomes too
slow for practical use (parameters as in Fig. 1).

the eigenvalues of B̂t results in an upper bound on the eigenvalues of
B̂−1

t which limits the effect of random variations on the stochastic gradi-
ent ŝ(wt, θ̃t). If this regularization is not implemented, i.e., if we keep
δ = 0, we may observe catastrophic amplification of random variations
of the stochastic gradient. This effect is indeed observed in the numerical
experiments in Section 4. The addition of the identity matrix bias ΓI in (4)
is also instrumental in the proof of Theorem 1. This bias limits the effects
of randomness in the curvature estimate B̂t. If random variations in the
curvature estimate B̂t result in a matrix B̂−1

t with small eigenvalues the
term ΓI dominates and (4) reduces to stochastic gradient descent. This
ensures continued progress towards the optimal argument w∗.

The convergence claim in Theorem 1is complemented by a expected
convergence rate result which we state in the following theorem.

Theorem 2 Consider the regularized stochastic BFGS algorithm as
defined by (4)-(9) and let the sequence of stepsizes be given by εt =
ε0τ/(τ + t) with the parameter ε0 sufficiently small and the parameter τ
sufficiently large so as to satisfy the inequality

2 ε0τΓ > 1 . (16)

If assumptions 1 and 2 hold true the difference between the expected objec-
tive value E [F (wt)] at time t and the optimal objective F (w∗) satisfies

E [F (wt)]− F (w∗) ≤ ξ

τ + t
, (17)

where the constant ξ satisfies

ξ = max

{
ε20 τ

2K

2ε0τΓ− 1
, (1 + τ)(F (w0)− F (w∗))

}
. (18)

Theorem 2 shows the convergence rate of regularized stochastic
BFGS is at least linear in terms of the expectation of the objective func-
tion. This rate is typical of stochastic optimization algorithms and, in that
sense, no better than stochastic gradient descent. While the convergence
rate doesn’t change, improvements in convergence time are marked as we
illustrate with the numerical experiments of the following section.

4. NUMERICAL ANALYSIS

We test Algorithm 1 when using the squared hinge loss l((x, y);w) =
max(0, 1−y(xTw))2 in (1). The training set S = {(xi, yi)}Ni=1 contains
N = 104 feature vectors half of which belong to the class yi = −1 with
the other half belonging to the class yi = 1. For the class yi = −1 each
of the n components of each of the feature vectors xi ∈ Rn is chosen
uniformly at random from the interval [−0.8, 0.2]. Likewise, each of the
n components of each of the feature vectors xi ∈ Rn is chosen uniformly
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Fig. 3. Histogram of correct classification percentages for dimension n =
4 and training set of size N = 2.5× 103. Vectors computed by stochastic
BFGS outperform those computed via stochastic gradients and are not far
from the accuracy of clairvoyant classifiers (test sets contain 104 samples;
histogram is across 103 realizations; parameters as in Fig. 1).

at random from the interval [−0.2, 0.8] for the class yi = 1. The overlap
in the range of the feature vectors is such that the classification accuracy
expected from a clairvoyant classifier that knows the statistic model of
the data set is less than 100%. Exact values can be computed from the
Irwin-Hall distribution [16]. For n = 4 this amounts to 98%.

We set the parameter λ in (1) to λ = 10−3. Since the Hessian eigen-
values of f(w,θ) := λ‖w‖2/2 + l((xi, yi);w) are, at least, equal to λ
this implies that the eigenvalue lower bound m̃ is such that m̃ ≥ λ =
10−3. Thus, we set the BFGS regularization parameter to δ = λ = 10−3.
Further set the minimum progress parameter in (3) to Γ = 10−4 and the
sample size for computation of stochastic gradients to L = 5. Stepsizes
are of the form εt = ε0τ/(τ + t) with ε0 = 3 × 10−2 and τ = 102. We
compare the behavior of stochastic gradient descent and stochastic BFGS
for a small dimensional problem with n = 4 and a large problem with
n = 40. For stochastic gradient descent the sample size in (3) is L = 1
and we use the same stepsize sequence used for stochastic BFGS.

An illustration of the relative performances of stochastic gradient de-
scent and BFGS for n= 4 is presented in Fig. 1. The value of the objective
function F (wt) is represented with respect to the number of feature vec-
tors processed, which is given by the product Lt between the iteration in-
dex and the sample size used to compute stochastic gradients. This is done
because the sample sizes in stochastic BFGS (L = 5) and stochastic gra-
dient descent (L = 1) are different. The curvature correction of stochastic
BFGS results in significant reductions in convergence time. E.g., Stochas-
tic BFGS achieves an objective value of F (wt) = 6.5× 10−2 upon pro-
cessing of Lt = 315 feature vectors. To achieve the same objective value
F (wt) = 6.5×10−2 stochastic gradient descent processes 1.74×103 fea-
ture vectors. Conversely, after processing Lt = 2.5× 103 feature vectors
the objective values achieved by stochastic BFGS and gradient descent are
F (wt) = 4.14× 10−2 and F (wt) = 6.31× 10−2, respectively.

The performance difference between the two methods is larger for fea-
ture vectors of larger dimension n. The plot of the value of the objective
function F (wt) with respect to the number of feature vectors processed
Lt is shown in Fig. 2 for n = 40. The convergence time of stochas-
tic BFGS increases but is still acceptable. For stochastic gradient descent
the algorithm becomes unworkable. After processing 3.5×103 stochastic
BFGS reduces the objective value to F (wt) = 5.55×10−4 while stochas-
tic gradient descent has barely made progress at F (wt) = 1.80× 10−2.

Differences in convergence times translate into differences in classifi-
cation accuracy when we process all N vectors in the training set. This is
shown for dimension n = 4 and training set sizeN = 2.5×103 in Fig. 3.
To build Fig. 3 we process N = 2.5× 103 feature vectors with stochastic
BFGS and stochastic gradient descent with the same parameters used in
Fig. 1. We then use these vectors to classify 104 observations in the test
set and record the percentage of samples that are correctly classified. The
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Fig. 4. Comparison of gradient descent, regularized stochastic BFGS,
and (non regularized) stochastic BFGS. The regularization is fundamental
to control the erratic behavior of stochastic BFGS (sample size L = 5;
constant stepsize εt = 10−1; stochastic BFGS parameters δ = 10−3 and
Γ = 10−4, feature vector dimension n = 10).

process is repeated 103 times to estimate the probability distribution of
the correct classification percentage represented by the histograms shown.
The dominance of stochastic BFGS with respect to stochastic gradient de-
scent is almost uniform. The vector wt computed by stochastic gradient
descent classifies correctly at most 65% of the of the feature vectors in the
test set. The vector wt computed by stochastic BFGS exceeds this accu-
racy with probability 0.98. Perhaps more relevant, the classifier computed
by stochastic BFGS achieves a mean classification accuracy of 82.2%
which is not far from the clairvoyant classification accuracy of 98%. Al-
though performance is markedly better in general, stochastic BFGS fails
to compute a working classifier with probability 0.02.

We also investigate the difference between regularized and non-
regularized versions of stochastic BFGS for feature vectors of dimension
n = 10. Observe that non-regularized stochastic BFGS corresponds to
making δ = 0 and Γ = 0 in Algorithm 1. To illustrate the advantage of
the regularization induced by the proximity requirement in (7), as opposed
to the non regularized proximity requirement in (6), we keep a constant
stepsize εt = 10−1. The corresponding evolutions of the objective func-
tion values F (wt) with respect to the number of feature vectors processed
Lt are shown in Fig. 4 along with the values associated with stochastic
gradient descent. As we reach convergence the likelihood of having small
eigenvalues appearing in B̂t becomes significant. In regularized stochas-
tic BFGS this results in recurrent jumps away from the optimal classifier
w∗. However, the regularization term limits the size of the jumps and
further permits the algorithm to consistently recover a reasonable cur-
vature estimate. In Fig. 4 we process 104 feature vectors and observe
many occurrences of small eigenvalues. However, the algorithm always
recovers and heads back to a good approximation of w∗. In the absence
of regularization small eigenvalues in B̂t result in larger jumps away from
w∗. This not only sets back the algorithm by a much larger amount than
in the regularized case but also results in a catastrophic deterioration of
the curvature approximation matrix B̂t. In Fig. 4 we observe recovery
after the first two occurrences of small eigenvalues but eventually there
is a catastrophic deviation after which non-regularized stochastic BFSG
behaves not better than stochastic gradient descent.

5. CONCLUSIONS

We considered the problem of determining the separating hyperplane of
a support vector machine using stochastic optimization. In order to han-
dle large scale problems with reasonable convergence times we adapted
a regularized stochastic version of the Broyden, Fletcher, Goldfarb, and
Shanno (BFGS) quasi-Newton method [9]. We derived theoretical con-
vergence guarantees that are customary of stochastic optimization and il-
lustrated improvements in convergence time through numerical analysis.
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