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ABSTRACT

The problem of finding clusters in a graph arises in several ap-
plications such as social networks, data mining and computer
networks. A typical, convex optimization-approach, that is
often adopted is to identify a sparse plus low-rank decompo-
sition of the adjacency matrix of the graph, with the (dense)
low-rank component representing the clusters. In this paper,
we sharply characterize the conditions for successfully identi-
fying clusters using this approach. In particular, we introduce
the “effective density” of a cluster that measures its signif-
icance and we find explicit upper and lower bounds on the
minimum effective density that demarcates regions of success
or failure of this technique. Our conditions are in terms of (a)
the size of the clusters, (b) the denseness of the graph, and
(c) regularization parameter of the convex program. We also
present extensive simulations that corroborate our theoretical
findings.

Index Terms— Graph clustering, low rank plus sparse,
convex optimization, thresholds.

1. INTRODUCTION

Given an unweighted graph, finding nodes that are well-
connected with each other is a very useful problem with
applications in social networks [1–3], data mining [4, 5],
bioinformatics [6, 7], computer networks, sensor networks.
Different versions of this problem have been studied as graph
clustering [8–11], correlation clustering [12–15], graph par-
titioning on planted partition model [16–19]. Developments
in convex optimization techniques to recover low-rank matri-
ces [20–24] via nuclear norm minimization has recently led
to the development of several convex algorithms to recover
clusters in a graph [25–32].

Let us assume that a given graph has dense clusters; we
can look at its adjacency matrix as a low-rank matrix with
sparse noise. That is, the graph can be viewed as a union of
cliques with some edges missing inside the cliques and extra
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(a) Feasibility of Program 1.1 in terms of the minimum effective density
(EDmin).
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(b) Feasibility of Program 1.1 in terms of the regularization parameter (λ).

Fig. 1: Characterization of the feasibility of Program (1.1) in terms of the
minimum effective density and the value of the regularization parameter. The
feasibility is determined by the values of these parameters in comparison with
two constants Λsucc and Λfail, derived in Theorem 1 and Theorem 2. The
thresholds guaranteeing the success or failure of Program 1.1 derived in this
paper are fairly close to each other.

edges between the cliques. Our aim is to recover the low-rank
matrix since it is equivalent to finding clusters. In this paper,
we will look at the following well known convex program
which decomposes the adjacency matrix (A) as the sum of a
low-rank (L) and a sparse (S) component.

minimize
L,S

‖L‖? + λ‖S‖1 (1.1)

subject to
1 ≥ Li,j ≥ 0 for all i, j ∈ {1, 2, . . . n} (1.2)
L + S = A

where λ > 0 is a regularization parameter. ‖X‖? and ‖X‖1
denote the nuclear norm (sum of the singular values) and the
`1-norm (sum of the absolute values of all entries) of the
matrix X respectively. This program is very intuitive and
requires the knowledge of only the adjacency matrix. Pro-
gram 1.1 has been proposed in several works [28–30].

We consider the popular stochastic block model (also
called the planted partition model) for the graph. Under
this model of generating random graphs, the existence of an
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edge between any pair of vertices is independent of the other
edges. The probability of the existence of an edge is identical
within any individual cluster, but may vary across clusters.
One may think of this as a heterogeneous form of the Erdös-
Renyi model. We characterize the conditions under which
Program 1.1 can successfully recover the correct clustering,
and when it cannot. Our analysis reveals the dependence of
its success on a metric that we term the minimum effective
density of the graph. While defined more formally later in the
paper, in a nutshell, the minimum effective density of a ran-
dom graph tries to capture the density of edges in the sparsest
cluster. We derive explicit upper and lower bounds on the
value of this metric that determine the success or failure of
Program 1.1 (as illustrated in Fig. 1a).

A second contribution of this paper is to explicitly charac-
terize the efficacy of Program 1.1 with respect to the regular-
ization parameter λ. We obtain bounds on the values of λ that
permit the recovery of the clusters, or those that necessitate
Program 1.1 to fail (as illustrated in Fig. 1b). Our results thus
lead to a more principled approach towards the choice of the
regularization parameter for the problem at hand.

Most of the convex algorithms proposed for graph cluster-
ing, for example, the recent works by Xu et al. [25], Ames and
Vavasis [26, 27], Jalali et al. [28], Oymak and Hassibi [29],
Chen et al. [30], Ames [31], Ailon et al. [32] are variants of
Program 1.1. These results show that planted clusters can be
identified via tractable convex programs as long as the cluster
size is proportional to the square-root of the size of the adja-
cency matrix. However, the exact requirements on the cluster
size are not known. In this work, we find sharp bounds for
the identifiability as a function of cluster sizes, inter cluster
density and intra cluster density. To the best of our knowl-
edge, this is the first explicit characterization of the feasibility
of the convex optimization based approach (1.1) towards this
problem.

The rest of the paper is organized as follows. Section 2
formally introduces the model considered in this paper. Sec-
tion 3 presents the main results of the paper: an analyti-
cal characterization of the feasibility of the low rank plus
sparse based approximation for identifying clusters. Sec-
tion 4 presents simulations that corroborate our theoretical
results. Finally, the proof outlines of the technical results are
deferred to Section 6.

2. MODEL

For any positive integerm, let [m] denote the set {1, 2, . . . ,m}.
Let G be an unweighted graph on n nodes, [n], with K dis-
joint (dense) clusters. Let Ci denote the set of nodes in the
ith cluster. Let ni denote the size of the ith cluster, i.e., the
number of nodes in Ci. We shall term the set of nodes that do
not fall in any of these K clusters as outliers and denote them
as CK+1 := [n] −

⋃K
i=1 Ci. The number of outliers is thus

nK+1 := n−
∑K
i=1 ni. Since the clusters are assumed to be

disjoint, we have Ci ∩ Cj = ∅ for all i, j ∈ [n].
LetR be the region corresponding to the union of regions

induced by the clusters, i.e., R =
⋃K
i=1 Ci × Ci ⊆ [n] × [n].

So, Rc = [n] × [n] − R is the region corresponding to out
of cluster regions. Note that |R| =

∑K
i=1 n

2
i and |Rc| =

n2 −
∑K
i=1 n

2
i . Let nmin := min

1≤i≤K
ni.

Let A = AT denote the adjacency matrix of the graph
G. The diagonal entries of A are 1. The adjacency matrix
will follow a probabilistic model, in particular, a more general
version of the popular stochastic block model [16, 33].

Definition 2.1 (Stochastic Block Model). Let {pi}Ki=1, q be
constants between 0 and 1. Then, a random graph G, gener-
ated according to stochastic block model, has the following
adjacency matrix. Entries of A on the lower triangular part
are independent random variables and for any i > j:

Ai,j =

{
Bernoulli(pl) if both {i, j} ∈ Cl for some l ≤ K
Bernoulli(q) otherwise.

So, an edge inside ith cluster exists with probability pi
and an edge outside the clusters exists with probability q. Let
pmin := min

1≤i≤K
pi. We assume that the clusters are dense and

the density of edges inside clusters is greater than outside,
i.e., pmin > 1

2 > q > 0. We note that the Program 1.1
does not require the knowledge of {pi}Ki=1, q or K, and uses
only the adjacency matrix A for its operation. However, the
knowledge of {pi}Ki=1, q will help us tune λ in a better way.

3. MAIN RESULTS

The desired solution to Program 1.1 is (L0,S0) where L0 cor-
responds to the full cliques, when missing edges insideR are
completed, and S0 corresponds to the missing edges and the
extra edges between the clusters. In particular we want:

L0
i,j =

{
1 if both {i, j} ∈ Cl for some l ≤ K,
0 otherwise.

(3.1)

S0
i,j =


−1 if both {i, j} ∈ Cl for some l ≤ K, and Ai,j = 0,

1 if {i, j} are not in the same cluster and Ai,j = 1,

0 otherwise.

It is easy to see that the (L0,S0) pair is feasible. We say
that Program 1.1 succeeds when (L0,S0) is the optimal solu-
tion to Program 1.1. In this section we present two theorems
which give the conditions under which Program 1.1 succeeds
or fails.

The following definitions are critical to our results.

• Define EDi := ni (2pi − 1) as the effective density of
cluster Ci and EDmin = min

1≤i≤K
EDi.
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• Let γsucc := max
1≤i≤K

4
√

(q(1− q) + pi(1− pi))ni,

γfail :=
∑K
i=1

n2
i

n

• Λfail := 1√
q(n−γfail)

and Λsucc := 1

4
√
q(1−q)n+γsucc

.

Theorem 1. Let G be a random graph generated according
to the Stochastic Block Model 2.1 with K clusters of sizes
{ni}Ki=1 and probabilities {pi}Ki=1 and q, such that pmin >
1
2 > q > 0. Given ε > 0, there exists positive constants
δ, c1, c2 such that,

1. Whenever EDmin ≥ (1 + ε)Λ−1
succ, for λ = (1 −

δ)Λsucc, Program 1.1 succeeds with probability 1 −
c1n

2 exp (−c2nmin).

2. For any given λ ≥ 0, if EDmin ≤ (1 − ε)Λ−1
fail then Pro-

gram 1.1 fails with probability 1− c1 exp(−c2|Rc|).

Theorem 2. Let G be a random graph generated according
to the Stochastic Block Model 2.1 with K clusters of sizes
{ni}Ki=1 and probabilities {pi}Ki=1 and q, such that pmin >
1
2 > q > 0. Given ε > 0, there exists positive constants c′1, c

′
2

such that,

1. If λ ≥ (1 + ε)Λfail, then Program 1.1 fails with probability
1− c′1 exp (−c′2|Rc|).

2. If λ ≤ (1− ε)Λsucc then,

• If EDmin ≤ (1 − ε) 1
λ , then Program 1.1 fails with

probability 1− c′1 exp (−c′2nmin).

• If EDmin ≥ (1 + ε) 1
λ , then Program 1.1 succeeds

with probability 1− c′1n2 exp (−c′2nmin).

We see that the minimum effective density EDmin,Λsucc
and Λfail play a fundamental role in determining the success
of Program 1.1. Theorem 1 gives a criteria for the inherent
success of Program 1.1, whereas Theorem 2 characterizes the
conditions for the success of Program 1.1 as a function of
the regularization parameter λ. We illustrate these results in
Figures 1a and 1b.

3.1. Sharp Performance Bounds

From our forward and converse results, we see that there is a

gap between Λfail and Λsucc. The gap is Λfail
Λsucc

=
4
√
q(1−q)n+γsucc√
q(n−γfail)

times. In the small cluster regime where max
1≤i≤K

ni = o(n)

and
∑K
i=1 n

2
i = o(n2), the ratio Λfail

Λsucc
takes an extremely sim-

ple form as we have γfail � n and γsucc �
√
n. In particular,

Λfail
Λsucc

= 4
√

1− q+ o(1), which is at most 4 times in the worst
case.

nmin (Minimum cluster size)

p
1
=

p
2
=

p
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Fig. 2: Simulation results showing the region of success (white region) and
failure (black region) of Program 1.1 with λ = 0.99Λsucc. Also depicted
are the thresholds for success (solid red curve on the top-right) and failure
(dashed green curve on the bottom-left) predicted by Theorem 1.
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Fig. 3: Simulation results showing the region of success (white region) and
failure (black region) of Program 1.1 with λ = 2ED−1

min. Also depicted
are the thresholds for success (solid red curve on the top-right) and failure
(dashed green curve on the bottom-left) predicted by Theorem 2.

4. SIMULATIONS

We implement Program 1.1 using the inexact augmented La-
grangian multiplier method algorithm by Li et al. [34]. We
note that this algorithm solves the program approximately.
Moreover, numerical imprecision prevents the output of the
algorithm from being strictly 1 or 0. Hence we round each
entry to 1 or 0 by comparing it with the mean of all entries
of the output. In other words, if an entry is greater than the
overall mean, we round it to 1 and to 0 otherwise. We declare
success if the number of entries that are wrong in the rounded
output compared to L0 (recall from (3.1)) is less than 0.1%.

We consider the set up with n = 200 nodes and two clus-
ters of equal sizes, n1 = n2. We vary the cluster sizes from
10 to 100 in steps of 10. We fix q = 0.1 and vary the prob-
ability of edge inside clusters p1 = p2 = p from 0.6 to 0.95
in steps of 0.5. We run the experiments 20 times and average
over the outcomes. In the first set of experiments, we run the
program with λ = 0.99Λsucc which ensures that λ < Λsucc.
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Figure 2 shows the region of success (white region) and fail-
ure (black region) for this experiment. From Theorem 1, we
expect the program to succeed when EDmin > Λ−1

succ, which
is the region above the solid red curve in Figure 2, and fail
when EDmin < Λ−1

fail , which is the region below the dashed
green curve in Figure 2.

In the second set of experiments, we run the program with
λ = 2

EDmin
. This ensures that EDmin >

1
λ . Figure 3 shows

the region of success (white region) and failure (black region)
for this experiment. From Theorem 2, we expect the program
to succeed when λ < Λsucc which is the region above the
solid red curve in Figure 3 and fail when λ > Λfail which is
the region below the dashed green curve in Figure 3.

We see that the transition indeed happens between the
solid red curve and the dashed green curve in both Figure 2
and Figure 3 as predicted by Theorem 1 and Theorem 2 re-
spectively.

5. DISCUSSION AND CONCLUSION

We provided sharp analysis of Program 1.1 which is com-
monly used to identify clusters in a graph and more generally,
to decompose a matrix into low-rank and sparse components.
We believe, our technique can be extended to tightly analyze
variants of this approach. As a future work, we are looking
at the extensions of Problem 1.1, where the adjacency ma-
trix A is partially observed, and also modifying Program 1.1
for clustering weighted graphs, where the adjacency matrix
A with {0, 1}-entries is replaced by a similarity matrix with
real entries.

6. OUTLINE OF THE PROOFS

This section presents an outline of the proofs of the theorems
stated in Section 3.
6.1. Additional Notation

Let c and d be positive integers. Consider a matrix, X ∈
Rc×d. Let β be a subset of [c]× [d]. Then, let Xβ denote the
matrix induced by the entries of X on β i.e.,

(Xβ)i,j =

{
Xi,j if (i, j) ∈ β
0 otherwise .

Let Ri,j = Ci × Cj for 1 ≤ i, j ≤ K + 1. One can see
that {Ri,j} divides [n] × [n] into (K + 1)2 disjoint regions
similar to a grid. Thus, Ri,i is the region induced by i’th
cluster for any i ≤ K. Let A ⊆ [n] × [n] be the set of
nonzero coordinates of A, i.e., 1n×nA = A. The set Ac ∩ R
corresponds to the missing edges inside the clusters and so
on.
6.2. Sketch of the proofs

Success: In order to show that (L0,S0) is the unique optimal
solution to the Program 1.1, we need to prove the following,

(‖L0 + EL‖? + λ ‖S0 + ES‖1)− (‖L0‖? + λ ‖S0‖1) > 0,
(6.1)

for all feasible perturbations (EL,ES). Let L0 = UΛUT ,
where Λ = diag{n1, n2, . . . , nK} and U = [u1 . . . uK ] ∈
Rn×K ,

ul,i =

{
1√
nl

if i ∈ Cl
0 otherwise.

Then, a subgradient of the nuclear norm at L0, ∂‖L0‖?, is
of the form UUT +W such that W ∈MU := {X : XU =
UTX = 0, ‖X‖ ≤ 1}. The subgradient ∂‖S0‖1 is of the
form sign(S0) +Q where Qi,j = 0 if S0

i,j 6= 0 and ‖Q‖∞ ≤
1. We note that, since L + S = A, EL = −ES . Note that
sign(S0) = 1

n×n
A∩Rc−1n×nAc∩R. Choose Q = 1

n×n
A∩R−1

n×n
Ac∩Rc .

We construct W ∈MU , from

W0 =

K∑
i=1

ci1
n×n
Ri,i

+ c1n×nRc + λ
(
1
n×n
A − 1n×nAc

)
where ci = −λ(2pi − 1), i = 1, 2, . . .K and c = −λ(2q −
1). Using results from [35] we compute upper bound on
‖W0‖ as

(
4
√

(q(1− q)n+ γsucc + ε
√
n
)
λ. Setting λ <(

4
√

(q(1− q)n+ γsucc + ε
√
n
)−1

, we then show that (6.1)
holds with high probability.
Failure: To prove the converse (conditions for failure), we
look at the Lagrange of the Program 1.1,

L (L,S;M,N) = ‖L‖? + λ‖S‖1 + trace(M(L− 11T ))

−trace(NL). (6.2)

where M and N, entry-wise non-negative, are dual vari-
ables corresponding to the inequality constraints (1.2).

For L0 = UUT + W to be an optimal solution to (1.1),
0 should belong to the subgradient of (6.2) at L0, i.e.,

∂‖L0‖? + λ ∂‖A− L0‖1 + M0 −N0 = 0.

where M0 and N0 are the optimal dual variables. Also, by
complementary slackness, trace(M0(L0 − 11

T )) = 0 and
trace(N0L0) = 0. We have (M0)R ≥ 0, (M0)Rc = 0,
(N0)R = 0 and (N0)Rc ≥ 0.

Looking at the sum of the entires correspondingRi,i, and
by using Bernstein’s inequality and ‖Q‖∞ ≤ 1, we prove
that, if EDmin < 1

λ , the Program 1.1 fails with probability
1−K exp (−Ω(n2

min)).
Noticing that

(
UUT

)
Rc = 0 and the entries of

(sign(S0) + Q)(Rc∩A) and (M0 −N0)(Rc∩A) are negative,
we lower bound 1 ≥ ‖W‖ by ‖λ (sign(S0) + Q)(Rc∩A) ‖2F .

Notice that the matrix, M := λ (sign(S0) + Q)(Rc∩A)

has entires λ overRc ∩A. Since,Rc ∩A is a random subset
of Rc, we can show that ‖M‖2F ≥ λ2q|Rc| with probability
1 − exp (−Ω(|Rc|)). So, if λ2 > n

q|Rc| , then ‖W‖ > 1 for
any UTW = WU = 0 hence W 6∈ MU . Consequently, the
program will fail with probability 1− exp (−Ω(|Rc|)).

Complete details of the proof can be found in the extended
technical report [36].
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