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ABSTRACT
We provide a logarithmic upper-bound on the regret function
of the diffusion implementation for the distributed estima-
tion. For certain learning rates, the bound shows guaran-
teed performance convergence of the distributed least mean
square (DLMS) algorithms to the performance of the best
estimation generated with hindsight of spatial and temporal
data. We use a new cost definition for distributed estimation
based on the widely-used statistical performance measures
and the corresponding global regret function. Then, for
certain learning rates, we provide an upper-bound on the
global regret function without any statistical assumptions.

Index Terms— Regret, distributed, estimation, diffusion

I. INTRODUCTION
Distributed network of nodes provides enriched observa-

tion ability over the monitored phenomena. In distributed
estimation framework, we utilize this ability to estimate a
parameter of interest by distributing the processing over the
network. Diffusion implementation is one of the commonly
used methods in distributed signal processing [1], [2]. Each
node diffuses information to its neighbors and performs a
local adaptive estimation algorithm more effectively with the
benefit of the exchanged information [1]. In [1], nodes use
the least mean square algorithm in local estimation and share
the parameter estimate within a predefined neighborhood.
The analysis of distributed estimation is rather challenging
because of the cooperation of the nodes and in the literature
authors provide performance analysis for certain statistical
profiles [1], [2].

In this work, we avoid any statistical assumptions and
aim to provide a deterministic performance analysis which
is guaranteed to hold for any spatial or temporal data. To do
that, we use a new cost definition for distributed estimation
algorithms [3], which satisfies the global performance mea-
sures used in [1] and [2]. Each local parameter estimation is
expected to converge to the optimum solution which yields
the minimum cost for overall spatial and temporal data, i.e.,
the parameter of interest. Hence, the new cost also bills
the performance of each local parameter estimate over the
observations of any other nodes. Then, we use a global
regret function, which is used as a performance measure
in deterministic analysis excessively [4], [5]. We can define
the regret of any algorithm as the difference between the
cost of the algorithm and the minimum possible cost we
could have with hindsight. Through the new cost and global

regret definitions, we provide a logarithmic regret upper-
bound on the performance of the diffusion based distributed
estimation (specifically adapt-then-combine strategy [2]) for
certain learning rates, which shows guaranteed performance
for any spatial or temporal data.

II. DIFFUSION IMPLEMENTATION
In a distributed network of N nodes, each node i observes

a parameter of interest1 wo ∈ Rp through a linear model

di,t = wo
Tui,t + vi,t,

where i and t are the node and time indices respectively.
vi,t denotes the observation noise and ui,t ∈ Rp is the local
regression vector.

In diffusion implementation framework, each node ex-
changes information with nodes from its neighborhood Ni
and performs an estimation algorithm through the local
observation di,t, the local regression vector ui,t and the
diffused information from the neighboring nodes. For ex-
ample, the diffused information from jth node might be the
local parameter estimation, i.e., wj,t, [1], [2]. In [2], authors
examine the change of the performance of the algorithms
with respect to the aggregation of the diffused information
before and after the adaptation. They show that the adapt-
then-combine (ATC) strategy outperforms the combine-then-
adapt (CTA) strategy. Hence, in this paper, we provide the
regret bound for the ATC strategy. The ATC update is given
by

φi,t+1 = wi,t + µiui,t
(
di,t − uTi,twi,t

)
wi,t+1 =

∑
j∈Ni

γi,jφj,t+1, (1)

where µi > 0 is the local step size and φi,t+1 is an
intermediate parameter vector. The combination weights
for the parameter estimates are denoted by γi,j’s and the
combination matrix Γ is given by

Γ =

γ11 . . . γ1N
...

. . .
...

γN1 . . . γNN

 ,
which is determined through certain combination rules, e.g.,
the Metropolis [6], with the constraint that Γ1 = 1 for

1As notation we use bold lowercase (uppercase) letters for vectors
(matrices). For a vector u, uT denotes its transpose and ‖u‖ is the l-2
norm.
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unbiased convergence. In [1] and [2], the authors define the
global performance measures for distributed estimation as
follows:

ηt =
1

N
E‖w̃t‖2, (2)

ζt =
1

N
E‖ea,t‖2, (3)

where w̃t
4
= wo −wt is the global deviation vector, ea,t is

the global a priori error vector with the global parameters
defined as

wo = col{wo, . . . ,wo}Np×1
wt = col{w1,t, . . . ,wN,t}Np×1 (4)

ea,t = col{ea1,t , . . . , eaN,t
}N×1

and the local a priori error is eai,t = uTi,t (wo −wt). Note
that (2) gives the global mean-square deviation and (3) yields
the global excess mean square error.

In [1] and [2], authors provide performance analysis for
distributed least squares algorithms under some assumptions
for certain statistical profiles. In the following we provide a
performance analysis for the diffusion implementation in the
deterministic framework without any statistical assumption.

III. LOGARITHMIC REGRET BOUND
With respect to the global performance measures (2) and

(3), we expect the parameter estimations of all nodes to
perform like w∗, which is the best estimate we made if we
would access to all spatial and temporal data overall network.
Particularly, the estimation of each node should also perform
well for the regression data of other nodes. Hence, the cost
of the distributed estimation at time T is given by

CostT (DE) =
1

N

T∑
t=1

N∑
i=1

N∑
j=1

(
di,t − uTi,twj,t

)2
.

Note that in [3], authors use the same cost definition for the
distributed autonomous online learning algorithm.

In the deterministic framework, regret function is a perfor-
mance measure defined as the difference between the total
cost and the cost of the best single decision, e.g., w∗, which
is chosen with the benefit of the hindsight [5]. We introduce
a global regret function over the network as follows:

RegretT (DE)
4
=

1

N

T∑
t=1

N∑
j=1

N∑
i=1

(
di,t − uTi,twj,t

)2
−

T∑
t=1

N∑
i=1

(
di,t − uTi,tw∗

)2
. (5)

We define the cost function as

fi,t (wj,t)
4
=
(
di,t − uTi,twj,t

)2
.

Then, (5) yields

RegretT (DE) =
1

N

T∑
t=1

N∑
j=1

N∑
i=1

[fi,t (wj,t)− fi,t (w∗)] .

We note that fi,t(wj,t) is a convex function around wj,t,
thus, the Hessian matrix ∇2fi,t(wj,t) is a positive semi-
definite matrix, i.e., ∇2fi,t(wj,t) � 0. The Hessian of the
strictly convex cost functions is lower bounded by a number
H > 0 if and only if

∇2fi,t(wj,t)−HIp � 0

is a positive semi-definite matrix. In [5], such functions
are called H-strong convex. We can also upper bound the
gradients of the cost function by a number G provided that

sup
w∈Rp,t∈[T ]

‖∇fi,t(wj,t)‖ ≤ G.

In addition, we assume that there are finite A,D ∈ R such
that ‖ui,t‖ < A and |di,t| < D for all i ∈ {1, · · · , N} and
t.

In [6], authors argue that the distributed linear averaging
iterations converge to the average if and only if the combi-
nation matrix Γ yields

lim
t→∞

Γt =
11T

N
.

This brings in the following constraints on Γ: 1) 1TΓ = 1T ,
2) Γ1 = 1, and 3) ρ

(
Γ− 11T

N

)
< 1, where ρ(·) denotes

the spectral radius of the matrix. If the weights in Γ are non-
negative, these conditions yields that Γ is doubly stochastic.
Then, for aperiodic and irreducible Γ, through the finite-state
Markov chain theory, we have

∀j
N∑
i=1

∣∣∣∣[Γt]i,j − 1

N

∣∣∣∣ ≤ θβt, (6)

where θ > 0 and 0 < β < 1. In [3], authors set θ = 2 and
choose β from the minimum nonzero values of Γ.

We choose the same time dependent step size at all
nodes and initialize each parameter estimate with the same
value. Then, the following theorem provides a logarithmic
bound on the regret function of ATC strategy for the doubly
stochastic combination matrix Γ.

Theorem. The diffusion based distributed estimation with
step sizes µi,t+1 = µt+1 = 1

Ht achieves the following
guarantee, for all T ≥ 1

RegretT (DDE) ≤ G2

2H
C(1 + log(T )), (7)

where
C = N

(
1 + 2

2G+AD

G

θ

1− β

)
.

In the next section, we provide the proof of the theorem.

IV. PROOF OF THE THEOREM
The ATC strategy (1) leads the following updates:

φi,t+1 = wi,t − µt+1∇fi,t(wi,t), (8)

wi,t+1 =

N∑
j=1

γi,jφj,t+1. (9)
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We can combine (8) and (9) as follows

wi,t+1 =

N∑
j=1

γi,jwj,t − µt+1

N∑
j=1

γi,j∇fj,t(wj,t). (10)

We assume that the combination matrix is doubly stochas-
tic, i.e.,

∑N
i=1 γi,j . Summing (10) from i = 1 to N , we

obtain
N∑
i=1

wi,t+1 =

N∑
j=1

wj,t − µt+1

N∑
j=1

∇fj,t(wj,t). (11)

We define an average parameter estimation vector w̄t as
follows

w̄t
4
=

1

N

N∑
i=1

wi,t.

Then, (11) yields

w̄t+1 = w̄t − µt+1
1

N

N∑
i=1

∇fi,t(wi,t). (12)

Subtracting w∗ from both side in (12) and taking l2 norm
square, we obtain

N∑
i=1

∇fi,t(wi,t)
T (w̄t −w∗) ≤

µt+1

2N

(
N∑
i=1

‖∇fi,t(wi,t)‖

)2

+
N

2

‖w̄t −w∗‖2 − ‖w̄t+1 −w∗‖2

µt+1
, (13)

where we use the triangular inequality as∥∥∥∥∥
N∑
i=1

∇fi,t(wi,t)

∥∥∥∥∥ ≤
N∑
i=1

‖∇fi,t(wi,t)‖ .

The Taylor series expansion of the cost function fi,t(·)
leads

fi,t(w̄t) =fi,t(wj,t) +∇fi,t(wj,t)
T (w̄t −wj,t)

+
1

2
(w̄t −wj,t)

T∇2fi,t(wj,t)(w̄t −wj,t)

(14)

and

fi,t(w∗) =fi,t(w̄t) +∇fi,t(w̄t)
T (w∗ − w̄t)

+
1

2
(w∗ − w̄t)

T∇2fi,t(w̄t)(w∗ − w̄t). (15)

By (14) and (15), we get

∇fi,t(w̄t)
T (w̄t −w∗) ≥ fi,t(wj,t)− fi,t(w∗)

−∇fi,t(wj,t)
T (wj,t − w̄t)

+
H

2
‖w̄t −wj,t‖2 +

H

2
‖w̄t −w∗‖2, (16)

where the last two term on the right hand side (RHS) follows
from the H-strong convexity.

We note that the term on the left hand side of (16) could
be written as

∇fi,t(w̄t)
T (w̄t −w∗) =−

[
ui,t(di,t − uTi,tw̄t)

]T
× (w̄t −w∗)

and leads to

∇fi,t(wi,t)
T (w̄t −w∗) = ∇fi,t(w̄t)

T (w̄t −w∗)

+(wi,t − w̄t)
Tui,tu

T
i,t(w̄t −w∗) (17)

Through (16), (17), and summing from j = 1 to N , we
have

∇fi,t(wi,t)
T (w̄t −w∗) ≥

1

N

N∑
j=1

[fi,t(wj , t)− fi,t(w∗)]

+
H

2N

N∑
j=1

‖wj,t − w̄t‖2 +
H

2
‖w̄t −w∗‖2

− 1

N

N∑
j=1

‖∇fi,t(wj,t)‖ ‖wj,t − w̄t‖

− ‖ui,tuTi,t(w̄t −w∗)‖ ‖wi,t − w̄t‖. (18)

We set a bound on the last term as

‖ui,tuTi,t(w̄t −w∗)‖ ≤
1

N

N∑
j=1

(‖∇fi,t(wj,t)‖+AD)

≤ G+AD.

After some algebra, (13) and (18) yields

1

N

N∑
i=1

N∑
j=1

[fi,t(wj,t)− fi,t(w∗)] ≤
N

2
µt+1G

2

− H

2

N∑
i=1

‖wi,t − w̄t‖2 + (2G+AD)

N∑
i=1

‖wi,t − w̄t‖

+
N

2

[(
1

µt+1
−H

)
‖w̄t −w∗‖2 −

1

µt+1
‖w̄t+1 −w∗‖2

]
.

(19)

In (19), we also have ‖wi,t − w̄t‖ terms. In [3], authors
bound ‖wi,t − w̄t‖ terms using (6). The following lemma
presents a similar result for the diffusion based distributed
estimation.

Lemma. For irreducible and aperiodic doubly stochastic
combination matrix Γ, the norm of the difference between the
parameter estimate of any node, e.g., wi,t, and the average
w̄t is bounded as follows:

‖wi,t − w̄t‖ ≤ NGθ
t−1∑
τ=1

µt−τ+1β
τ .

Proof. We resort to the global parameter estimation wt
definition (4) and define

f t
4
= col{∇f1,t(w1,t), · · · ,∇fN,t(wN,t)}.
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Then, by (10), we obtain

wt+1 = Γwt − µt+1Γf t, (20)

where Γ = Γ⊗ Ip. The iteration of (20) leads

wt = Γt−1w1 −
t−1∑
τ=1

µt−τ+1Γ
τ f t−τ . (21)

We introduce e
4
= col{1, · · · , 1} ⊗ Ip and ei

4
=

col{0, · · · , 1, · · · , 0}⊗Ip where only the ith term is 1. Since
Γ is a right-stochastic matrix, i.e., eΓ = e, through (21), we
can bound the term ‖w̄t −wi,t‖ as follows

‖w̄t −wi,t‖ =

∥∥∥∥( 1

N
e− ei

)
wt

∥∥∥∥
≤
∥∥∥( e

N
− ei

)
Γt−1w1

∥∥∥+

t−1∑
τ=1

µt−τ+1

∥∥∥( e

N
− ei

)
Γτ f t−τ

∥∥∥
≤ ‖w̄1 −wi,1‖+

t−1∑
τ=1

µt−τ+1‖f t−τ‖
∥∥∥∥( 1

N
e− ei

)
Γτ
∥∥∥∥ .

We assume that all parameter estimation vectors are initial-
ized with the same value, i.e., w̄1 =

∑N
i=1 wi,1 = wi,1,

then the difference term ‖w̄1−wi,1‖ goes to zero. We also
note that

‖f t−τ‖ =

N∑
i=1

‖∇fi,t(wi,t)‖ ≤ NG.

Finally, by (6), we have

∥∥∥∥ 1

N
eΓτ − eiΓ

τ

∥∥∥∥ =

N∑
j=1

∣∣∣∣[Γτ ]j,i −
1

N

∣∣∣∣ ≤ θβτ .
The proof is concluded. �

Through the Lemma, the summation of (19) from t = 1
to T leads

1

N

T∑
t=1

N∑
i=1

N∑
j=1

[fi,t(wj,t)− fi,t(w∗)] ≤
NG2

2

T∑
t=1

µt+1

+
N

2

T∑
t=1

[(
1

µt+1
−H

)
‖w̄t −w∗‖2 −

1

µt+1
‖w̄t+1 −w∗‖2

]

+NGθ(2G+AD)

T∑
t=1

t−1∑
τ=1

µt−τ+1β
τ . (22)

We drop ‖wi,t− w̄t‖2 term in (22). This expands the upper
bound on the regret function, however, results in simpler

bound expression. The last term on the RHS of (22) yields

T∑
t=1

[(
1

µt+1
−H

)
‖w̄t −w∗‖2 −

1

µt+1
‖w̄t+1 −w∗‖2

]
=

(
1

µ2
−H

)
‖w̄1 −w∗‖2 −

1

µ2
‖w̄2 −w∗‖2︸ ︷︷ ︸

+

(
1

µ3
−H

)
‖w̄2 −w∗‖2︸ ︷︷ ︸−

1

µ3
‖w̄3 −w∗‖2

...

+

(
1

µT+1
−H

)
‖w̄T −w∗‖2 −

1

µT+1
‖w̄T+1 −w∗‖2

(23)

Re-arranging the sum such that the terms with the same time
indices gathered together, we obtain

T∑
t=1

[(
1

µt+1
−H

)
‖w̄t −w∗‖2 −

1

µt
‖w̄t −w∗‖2

]
.

(24)

Note that during the rearrangement of the sum we set 1
µ1

= 0
(µ1 is not used in the update (10)) and extend the upper-
bound by neglecting the last term in (23). (24) implies that
for µt+1 = 1

Ht , the second term on the RHS of (22) goes
to zero.

In [3], authors show that

T∑
t=1

t−1∑
τ=1

µt−τ+1β
τ ≤ 1

1− β

T∑
t=1

µt+1.

Thus, for µt+1 = 1
Ht , we have

RegretT (DDE) ≤
(
NG2

2
+
NGθ(2G+AD)

1− β

) T∑
t=1

1

Ht

and
∑T
t=1

1
t ≤ 1 + log(T ). This completes the proof of the

Theorem (7).

V. CONCLUDING REMARKS

Diffusion implementation has appealed interest in the
distributed estimation and provides improved convergence
performance over the non-coherent update. In this paper, we
provide a logarithmic regret upper bound on the diffusion
based distributed estimation algorithms for certain learning
rates. An upper bound on regret function is of interest
because averaging the regret over time, we observe that
logarithmic upper-bound goes to zero. This implies that
the performance of the distributed estimation asymptotically
converges to the performance of the best solution we could
get with the hindsight of all spatial and temporal data.
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