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ABSTRACT
Data representation is a crucial issue in signal processing and ma-
chine learning. In this work, we propose to guide the learning pro-
cess with a prior knowledge describing how similarities between ex-
amples are organized. This knowledge is encoded in a tree struc-
ture that represents nested groups of similarities that are the pyra-
mids of kernels. We propose a framework that learns a Support Vec-
tor Machine (SVM) on pyramids of arbitrary heights and identifies
the relevant groups of similarities groups are relevant for classifying
the examples. A weighted combination of (groups of) similarities
is learned jointly with the SVM parameters, by optimizing a crite-
rion that is shown to be an equivalent formulation regularized with
a mixed norm of the original fitting problem. Our approach is illus-
trated on a Brain Computer Interfaces classification problem.

Index Terms— Classification; Kernel methods; Multiple Kernel
Learning; Structured sparsity; Brain Computer Interfaces.

1. INTRODUCTION AND RELATED WORKS

Kernel methods for supervised classification. Supervised classifi-
cation aims to estimate a decision function able to predict the label
y of a pattern x. In binary classification, learning relies on a sample
S = {(xi, yi)}ni=1, where (xi, yi) ∈ X ×{±1}. In Support Vector
Machines (SVM), the examples are implicitely mapped to a feature
space via a mapping Φ : X → H, whereH is a Reproducing Kernel
Hilbert Space (RKHS) and K : X × X → R is the corresponding
reproducing kernel.

The primary role of K is to define the evaluation functional in
H: ∀f ∈ H, f(x) = 〈f,K(x, ·)〉H . However, K also defines

• H itself, since ∀f ∈ H, f(x) =
∑∞
i=1 αiK(xi,x);

• a metric, and hence a smoothness functional in H: ||f ||2H =∑∞
i=1

∑∞
j=1 αiαiK(xi,xj);

• a similarity between pairs of examples, via the mapping Φ:
K(x,x′) = 〈Φ(x),Φ(x′)〉H .

Hence, the kernel participates to the success of the method and
its choice is a crucial issue. This motivates works that may help to
learn an appropriate kernel, such as filters, wrappers and embedded
methods (see respectively [1], [2, 3, 4], and [5, 6] for instance). The
Multiple Kernel Learning (MKL) framework introduced in [7] be-
longs to the family of embedded methods. It builds on standards
SVM which minimize the following optimisation problem

(f?, b?) = arg min
(f,b)

1

2
‖f‖2H + C

n∑
i=1

[1− yi(f(xi) + b)]+ ,

∗Work carried out in the framework of the Labex MS2T, funded by the
French National Agency for Research (ANR-11-IDEX-0004-02).

where [u]+ = max(0, u) is the hinge loss function and C > 0
controls the trade-off between the complexity of the model and the
proportion of non-separable examples. The decision function of the
resulting classification problem takes the shape of sign(f?(x)+b?).
Learning with multiple unstructured kernels. In MKL, we are
provided with M candidate kernels, {Km}Mm=1, and we wish to es-
timate the parameters of the SVM classifier together with the weights
of a convex combination of the M kernels that defines the effective
kernel. In [8], the authors propose to solve

(1)



min
f1,...,fM ,

b,σ

1

2

M∑
m=1

1

σm
‖fm‖2Hm +

C

n∑
i=1

[1− yi
( M∑
m=1

fm(xi) + b
)
]+ ,

s. t.

M∑
m=1

σm ≤ 1 , σm ≥ 0 , ∀m ∈ {1, . . . ,M} ,

where ∀m, Hm is a RKHS with reproducing kernel Km and σm is
the coefficient applied to Km. 1 In Problem (1), the constraints on
coefficients σm favor sparse solutions regarding fm and thus Km.
Learning with structured multiple kernels. The selection or re-
moval of kernels between or within predefined groups relies on the
definition of a structure among kernels. This kind of structure has
been widely investigated among variables in linear models. For in-
stance, mixed norms correspond to groups defined as a partition of
the set of variables (see [9] and references therein) while the Com-
posite Absolute Penalties (CAP) introduced in [10] and further stud-
ied in [11] may also rely on a set of nested groups of variables
I = {Gk}Kk=1, with G1 ⊂ . . . ⊂ Gk ⊂ . . . ⊂ GK .

The Hierarchical Kernel Learning (HKL) framework introduced
in [12] extends CAP to a hierarchy of kernels using the penalty

`(γ0;γ1) =

K∑
k=1

( ∑
m∈Gk

‖fm‖γ1Hm
)γ0/γ1

, (2)

with γ1 = 2 or∞ and γ0 = 1, in which case it favors the so-called
hierarchical selection [10], that is, the selection of groups of kernels
in the predefined order {I \GK}, {GK \GK−1}, . . . , {G2 \G1},G1
according to some heredity principle.

Both HKL and KEOPS are generalizations of MKL, but their
notion of hierarchy differs radically: HKL is based on a partial order
of kernels, whereas KEOPS (KErnels Organized into PyramidS) that
will be introduced in Section 2, relies on nested groups of kernels.

1In here and in what follows, u/v is defined by continuation at zero as
u/0 =∞ if u 6= 0 and 0/0 = 0.
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Fig. 1: Pictorial representation of notation for a tree structure.

We extend the Composite Kernel Learning framework [13], which
considers a partition of the set of kernels, to nested partitions. Sim-
ilarities can then be grouped at different levels, enabling more flexi-
bility for learning the effective kernel. We first develop the extension
starting from Problem (1), before giving an equivalent formulation
based on mixed norms.

2. FRAMEWORK

In MKL, the effective kernel is a flat linear combination of kernels.
Our hierarchical combination, still linear, aims to encode richer as-
sumptions about the structure of the solution. For this purpose, we
consider a tree structure of kernels such as the one illustrated in Fig-
ure 1. Each node represents a kernel: the leaves are the pre-defined
elementary kernels, and the kernel of their ancestor’s nodes are de-
fined recursively as one proceeds toward the root of the tree, by a
weighted combination of their children. The root node itself thus
represents the effective kernel.

At this point, we need to introduce some notation for the tree
structure (see Fig. 1). The tree height is indexed by h, with h = 0
at the root and h = H for the leaves. At height h, there are Mh

nodes, indexed by m ∈ {1, . . . ,Mh}. The set of children of node
m at height h is denoted by Gh+1,m (children are at height h + 1).
A coefficient σh,m is attached to each edge of the tree: it weights
the contribution of the mth kernel at height h to the computation
of its parent kernel. That is, denoting Kh,m the equivalent kernel
of node m at height h, we have KH,m = Km and Kh−1,m =∑
mh∈Gh,m

σh,mh Kh,mh . For example, in Figure 1, the kernel at
node m1 at height 1 is defined as

∑
m2∈G2,m1

σ2,m2Km2 and its
contribution to the effective kernel is weighted by σ1,m1 . In what
follows, index mh always runs in Gh,m.

In this framework, learning consists in assigning values to the all
coefficients σh,m, which define the effective kernel, and to the SVM
parameters. This learning problem is formalized as:

(3)



min
f1,...,fM ,

b,σ

1

2

∑
m1

1

σ1,m1
p1

. . .
∑
mH

1

σH,mH
pH
‖fmH‖

2
HmH

+ C

n∑
i=1

[
1− yi

( MH∑
m=1

fm(xi) + b
)]

+

s. t.

Mh∑
m=1

σh,m ≤ 1 , ∀h ∈ {1, . . . , H}

σh,m ≥ 0 , ∀(h,m) ∈ {1, . . . , H} × {1, . . . ,Mh} ,

where the parameters ph introduced here allow to control the sparsity
at level h. The choice of these free parameters is discussed below.

The objective function of Problem (3) explicitely relies on the
weights σh,m that define the effective kernel. For analysis purposes,
it is interesting to reformulate this objective function in terms of a
mixed norm on functions fm, so as to exhibit the penalty applied at
each level of the tree structure.

Proposition 1 From the optimality conditions of σ, the objective
function of Problem (3) reads:

1

2

(∑
m1

(∑
m2

. . .
(∑
mH

‖fmH‖
γH
HmH

) γH−1
γH . . .

) γ1
γ2

) 2
γ1

+C

n∑
i=1

[
1− yi

( MH∑
m=1

fm(xi) + b
)]

+
, (4)

with γk = 2
(

1 +

H∑
h=k

ph
)−1

.

This nested mixed norm contrasts with the CAP-like penalty (2):
when CAP relies on nested groups, levels correspond to penalty
strengths, whereas we use levels to shape the penalty structure.

The convexity and sparsity properties related to the mixed norm
in (4) are well-known:

• function (4) is convex if and only if γh ≥ 1 ∀h ∈ {1, . . . , H};
• the minimizers of (4) are expected to be sparse at height h if

and only if γh ≤ 1.

Hence γh = 1 ∀h ∈ {1, . . . , H} is required to have a convex prob-
lem whose solution will be sparse at each level. In this case, KEOPS
reduces de facto to MKL and the group structure plays no role. Con-
vexity, sparsity and effective group-structure can all concur when the
latter aims at ensuring the joint selection of the elements of groups
at some levels. As a result, we will consider non-convex structured
penalties in order to encourage sparsity at different levels.

3. ALGORITHM

The direct minimization of (4) is difficult even for MKL [8], which
is the simplest possible case we may consider, with H = 1. We
thus resort to Problem (3), whose resolution follows the simpleMKL
scheme, with two nested problems. The outer problem defines the
optimal effective kernel as follows:

(5)



min
σ

J(σ)

s. t.

Mh∑
m=1

σh,m ≤ 1 , ∀h ∈ {1, . . . , H}

σh,m ≥ 0 , ∀ (h,m) ∈ {1, . . . , H} × {1, . . . ,Mh} ,

where J(σ) is the optimal value of the objective function of a stan-
dard SVM problem, with a kernel set to the effective kernel defined
by σ. This SVM problem defines the inner problem:

J(σ) = min
f1,...,fM ,

b

1

2

∑
m1

1

σ1,m1
p1

. . .
∑
mH

1

σH,mH
pH
‖fmH‖

2
HmH

+ C

n∑
i=1

[
1− yi

( MH∑
m=1

fm(xi) + b
)]

+

. (6)

The inner problem (6) solves Problem (3) with respect to {fm} and
b, for fixed σ parameters, thereby defining the value function J(σ)
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for the outer problem. The outer problem (5) optimize Problem (3)
with respect to the weights σ for fixed {fm} and b values.

Problem (6) is a standard SVM problem, while Problem (5) is
solved exactly from the optimality conditions of σ. For lack of
space, we limit the detailed exposure to a hierarchy with 3 levels. 2

σ1,m1 = c× (sm1)
γ1
γ2

σ2,m2 = c× (sm1)−
p1γ1

2 × (sm2)
γ2
γ3

σ3,m3 = c× (sm1)−
p1γ1

2 × (sm2)−
p2γ2

2 × ‖fm3‖
γ3
Hm3

,

where sm2 =
∑
m3
‖fm3‖

γ3
Hm3

, sm1 =
∑
m2

(sm2)
γ2
γ3 and c =(∑

m1
(sm1)

γ1
γ2

)−1

. The overall procedure is summarized below.

Algorithm 1: KEOPS

initialize σ ; solve the SVM problem→ J(σ) ;
repeat

repeat
for h = {1, . . . , H} and m = {1, . . . ,Mh} do

update σh,m; // according to
// optimality conditions of (3)

solve the SVM problem→ J(σ) ;
until convergence;

until convergence;

4. EXPERIMENTS

Dataset. This experiment comes from Brain-Computer Interface
(BCI) and deals with single trial classification of EEG signals. We
use the dataset from the BCI 2003 competition for the task of inter-
facing the P300 Speller [14]. The 7560 EEG signals, recorded from
64 electrodes (or channels) and paired with positive or negative vi-
sual stimuli responses, are processed as in [15]. It leads to 7560
examples of dimension 896 with 14 time frames for each of the 64
channels. The 896 features extracted from the EEG signals are not
transformed before classification and are used as linear kernels.

Structure. We consider a tree structure of 3 levels with brain regions
at the top level, channels at the intermediate level and time frames
at the leaf level. Sparsity is expected at each level. The channels
are grouped into different cerebral cortex areas to encourage locali-
sation in the brain functional regions. Indeed, some regions may be
more involved than others to solve a task related to a paradigm. In
particular, the strongest activity for the P300 Speller is expected to
occur over the parietal brain area [16]. Furthermore, an automated
channel selection for each single subject is of primary importance
for BCI real-life applications since it makes the acquisition system
easier to use and to set-up and may lead to better performances [17].
Finally, the most salient frames for the P300 Speller are expected to
be centered around 300 ms which corresponds to frames 7 and 8, so
that feature selection may be also carried out within each channel to
eliminate irrelevants frames. Therefore, we have to learn different
coefficients {σh}3h=1 according to M3 = 896 frames divided into
M2 = 64 channels organized into M1 = 17 regions.

2These expressions, obtained after tedious algebra from the first-order
optimality conditions of Problem (3), are available upon request.

Methods. We aim at classifying the EEG trials with as few channels
and time frames as possible. To induce a sparse solution through the
different levels, we test a non-convex parametrization of KEOPS,
which corresponds to a `(1/2;2/3;1) penalty, by setting ph = 1, ∀h.
We compare our approach to MKL and SPAMS which implements a
classification method for linear models with tree structured penalties
as those presented in Section 1 [11]. Note that SPAMS has been
tested with all the penalties available though the reported results only
concern the `(1;2) mixed norm that achieves the best performance.
Protocol. We have randomly picked 567 training examples from
the datasets and used the remaining as testing examples. Using a
small part of the examples for training can be justified by the use
of ensemble of SVM (not considered here) on a latter stage of the
EEG classification procedure [15]. The hyperparameter C has been
selected by 5-fold cross validation. The performance is measured by
the AUC. This overall procedure has been repeated 10 times.
Numerical results. Table 1 reports the average AUC for KEOPS,
SPAMS and MKL together with the number of regions, channels
and frames selected. The prediction performances are similar for
the 3 methods, with a slight advantage for KEOPS. Regarding spar-
sity, KEOPS has a clear edge at all levels, with much less features
involved than SPAMS or MKL. In terms of brain areas, KEOPS fo-
cusses on half of the regions while SPAMS needs three quarters of
them. MKL, which does not take any structure into account, keeps
all the regions. At the channels level, KEOPS is still extremely
sparse, retaining less than a quarter of the electrodes whereas MKL
and SPAMS solutions require almost three quarters of them. Finally,
KEOPS keeps at the very most a tenth of the frames and is two times
sparser than MKL. SPAMS, with `(1;γ1>1) penalties applied on con-
tiguous levels, is not designed to be sparse at the leaf level so that all
the frames of the selected channels are involved.
Graphical results. Figure 2 represents the median relevance of the
regions, channels and frames computed over the 10 experiments.
The results for KEOPS are particularly neat and show the highest
relevances in the parietal lobe with the lateral electrodes PO7, PO8

and P8. The primary motor and somatosensory cortices are also sig-
nificantly involved with the central electrodes FCZ, CZ, and CPZ as
well as the left part of the temporal lobe with the electrode T9. The
maps for MKL and SPAMS identify the importance of the same re-
gions and channels (CPZ appears significantly in the third quartile
map for SPAMS) but also highlight numerous frontal electrodes that
are not likely to be relevant for the BCI P300 Speller. At the frames
level, all the methods show a slow rise with a sudden peak at frames
7 and 8 followed by a slow decline, with a more drastic elimination
process regarding the frames outside this bandwidth for KEOPS.

5. CONCLUSION

KEOPS is at the crossroad of kernel learning and structured feature
selection. It extends the MKL framework to encode nested groups
of similarities in a tree structure allowing flexible formulations that
transcribe richer assumptions about the solution. This behavior is
illustrated in a BCI problem where KEOPS reaches the prediction
performances of the competing approaches with much less features
providing interpretable solutions at different scales. A further im-
provement in our approach would be to introduce penalties that can
encourage sparsity according to some kind of neighborhood such as
in [18] or [19]. Indeed, regarding the BCI application for instance,
such penalties could induce some persistency between contiguous
regions or time frames.
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Method AUC # Regions # Channels # Frames
KEOPS 85.8 ± 1.2 08.3 ± 1.8 13.1 ± 2.91 162.3 ± 17.51
SPAMS 84.4 ± 0.6 12.1 ± 2.8 50.9 ± 8.41 712.6 ± 117.0
MKL 85.5 ± 0.9 16.3 ± 0.5 49.7 ± 7.61 139.7 ± 41.21

Table 1: Average results and standard deviations for KEOPS, SPAMS and MKL on the BCI P300 Speller dataset.
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Fig. 2: Median relevance at the regions (top), channels (middle) and frames (bottom) levels for KEOPS, SPAMS and MKL. The darker the
color, the higher the relevance. Regions and electrodes with no color and a black boundary as well as frames in white are discarded (the
relevance is exactly zero). At each level, a normalization factor has been applied to set the sum of relevances to one. At the frames levels, the
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