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ABSTRACT

This paper presents an automatic system for recognition of bird
species from field audio recordings. The proposed system employs a
novel method for detection of sinusoidal components in the acoustic
scene. This provides a segmentation of the signal and also feature
representation of each segment in terms of frequencies over time,
referred to as frequency track. We employ hidden Markov models
(HMMs) to model the temporal evolution of frequency tracks. We
demonstrate the effect of including local temporal dynamics of fre-
quency tracks and HMM modelling parameters. Experiments are
performed on over 33 hours of field recordings, containing 30 bird
species. Evaluations demonstrate that the HMM-based temporal
modelling provides considerable performance improvement over a
system based on Gaussian mixture modelling. The proposed HMM-
based system is capable of recognising bird species with accuracy
over 85% from only 3 seconds of detected signal.

Index Terms— bird species recognition, hidden Markov mod-
els, segmentation, frequency track, sinusoidal detection

1. INTRODUCTION

Identification of bird species is an important issue for biological re-
search and environmental protection. Birds are sensitive to environ-
mental changes and their presence can indicate the biodiversity and
the health of the environment. Bird species identification currently
relies on expert ornithologists who identify birds by sight and, more
often, by their songs and calls. In recent years there has been an
increased interest in automatic recognition of bird species using the
acoustic signal.

Automatic processing of bird vocalisations usually starts with
segmenting the continuous audio signal into syllables and then ex-
tracting some features to represent the syllable. Some studies in-
volved manual segmentation [1, 2]. Many works that employed auto-
mated segmentation used an energy-based threshold decision in time
or time-frequency domain, with the threshold set based on estimated
noise level, e.g., [3, 4, 5]. The approach of decomposing the acous-
tic scene into sinusoidal components was employed in [2, 3, 6, 7].
The works in [2, 6], employing the method proposed in [8], consid-
ered all the spectral peaks at each frame time and used a threshold-
based assessment of frequency and amplitude continuity of peaks
over adjacent frames. The obtained peak tracks underwent further
automated energy-based pruning. In [6], the obtained tracks were
further hand-pruned for training data. Similar sinusoidal-based seg-
mentation was also used in [3] where the pruning was effectively
performed by using only the dominant sinusoid. We proposed in

[9, 10] a probabilistic method that enables to detect only those peaks
corresponding to sinusoidal components from all the spectral peaks
at a given frame time, without requiring any noise estimate, and em-
ployed this for segmentation of bird vocalisations in [7, 11].

Several types of feature representations and modelling ap-
proaches of bird acoustic signals have been explored. The modelling
approaches used include dynamic time warping [1, 12], Gaussian
mixture models [3, 7], hidden Markov models (HMMs) [3, 13],
neural networks [14], and support vector machines [4]. The use
of HMMs is compelling as they can model the temporal evolution
of sequences. For feature representation, many previous studies
were inspired by features used in the field of speech processing, for
instance, filter-bank energies were used in [12], and Mel-frequency
cepstral coefficients (MFCC) in [12, 15, 3, 4, 16]. Since the conven-
tional MFCCs capture the entire frequency band, they are prone to
background noise and presence of other birds/animals concurrently
vocalising in other frequency regions. The works in [2, 3, 6, 17, 4]
used a set of statistical descriptors to characterise the detected
spectro-temporal regions of syllables. Such descriptors may not
be able to describe well a more complex types of syllables and
may be susceptable to any variations in segmentation. Few other
studies aimed at representing the bird detected segments as a tem-
poral sequence of frequencies, which we here refer to as frequency
track [3, 13, 7, 11]. Note that although the works in [2, 6] obtained
frequency tracks, they did not use the sequence directly but char-
acterised the tracks by a set of statistical descriptors. In [3], the
frequency track features were shown to perform worse than MFCC
features. However, our recent study in [7] has demonstrated that
the frequency track features can provide significantly better perfor-
mance than MFCCs in noisy background conditions. The frequency
track features, if extracted well, have a good potential, especially,
in processing field recordings of bird vocalisations which usually
contain various background noise and often also other birds/animals
vocalising concurrently.

In this paper, we study automatic bird species recognition using
real-world field recordings. This study extends our previous works
by investigating the use of the frequency track features, obtained
using the sinusoidal detection algorithm from [10], on large-scale
field recordings and studying the effect of temporal modelling of
the frequency track features for bird species recognition. We model
the temporal evolution of frequency tracks for each bird species us-
ing hidden Markov models. The recognition is performed based on
recognising individual detected segments on each bird species model
and aggregating the probabilities from all segments to reach a deci-
sion. Experimental evaluations are performed on field recordings
provided by the Borror Laboratory of Bioacoustics [18]. We demon-
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strate the effect of including information on local temporal dynam-
ics of the frequency tracks and the effect of modelling with various
number of HMM states and mixture components at each state. Eval-
uations are also presented for different lengths of detected signal.
Experimental results show that over 85% recognition accuracy can
be achieved with using only 3 seconds of detected signal.

2. SEGMENTATION AND ESTIMATION OF FREQUENCY
TRACKS FOR BIRD VOCALISATIONS

The estimation of frequency tracks is performed based on the detec-
tion of individual sinusoidal components at each frame time in the
entire acoustic scene using the method we introduced in [10], with
some modifications as presented here. Based on the detected sinu-
soidal components, we then characterise the signal in terms of the
frequency of each detected sinusoidal component. A continuous se-
quence of detected sinusoidal components forms what we refer to
as a frequency track. As this can provide multiple frequency tracks
during the same time periods, it can deal with concurrent vocalisa-
tions of multiple birds. The following subsections first give a brief
summary of the sinusoidal detection method with a parameter setup
and then describe the segmentation procedure.

2.1. Estimation of Frequency Tracks

We tackle the sinusoidal detection problem as a pattern recognition
problem. We consider that the signal may consist of an unknown
number of sinusoidal components. Each spectral peak is first con-
sidered as a potential sinusoidal component. A set of features, ex-
tracted from the short-time spectrum, is obtained for each spectral
peak. The decision whether the peak is detected as a sinusoid or not
is based on calculating the probability of the extracted set of features
on a model corresponding to sinusoids and to noise.

2.1.1. Spectral magnitude and phase features

Let us denote the short-time spectrum of the lth frame of the signal
by Sl(k). Denote the frequency index of a spectral peak found in the
short-time magnitude spectrum by kp. For each peak, a multivariate
feature vector y, capturing the spectral magnitude shape and phase
continuity information around the peak, is extracted. The magnitude
shape features are obtained by using a normalised spectral magni-
tude values over the range of frequency bins from kp−M to kp+M ,
i.e., y1=(|S̃l(kp−M |, . . . , |S̃l(kp− 1)|, |S̃l(kp + 1)|, . . . |S̃l(kp +

M |), where |S̃l(k)| is the magnitude spectrum |Sl(k)| normalised
by the magnitude value at the peak |Sl(kp)| and M denotes the
number of bins considered around the peak. The phase continu-
ity features are obtained by using the spectral phase difference val-
ues over the range of frequency bins from kp − M to kp + M ,
i.e., y2=(∆φl(kp − M), . . . ,∆φl(kp + M)). The phase differ-
ence between the current and previous signal frame is defined as
∆φl(k) = φl(k)− φl−1(k)− 2πkL/N , where φl(k) and φl−1(k)
denote the phase of the frequency point k at frame-time l and l − 1,
respectively, and L is the frame-shift in samples.

2.1.2. Probabilistic modelling

The distribution of the multivariate feature vector y = (y1,y2), rep-
resenting the spectral magnitude shape and phase continuity, is mod-
elled by using GMM. A large collection of features y corresponding
to spectral peaks of noise and of sinusoidal signals at various SNRs

are used as the training data to estimate the parameters of the GMM
of noise, denoted by λn, and of sinusoidal signal, denoted by λs.

A given unknown audio signal is processed as described in the
previous section to extract the features for each spectral peak. The
decision whether a spectral peak at a given signal frame corresponds
to a sinusoidal signal or not is based on the maximum likelihood cri-
terion, i.e., the peak is detected as a sinusoid if p(y|λs) > p(y|λn).

2.1.3. Parameter setup

The signal, sampled at 48 kHz, was divided into frames of 256 sam-
ples with a shift of L=48 samples between the adjacent frames. The
frame length and frame shift corresponds to 5.3 ms and 1 ms, respec-
tively. This is considerably shorter than used in most other studies
on bird processing. The use of signal frames of similarly short du-
ration were found suitable for processing of bird acoustic signals in
our previous research [7] [11]. Rectangular analysis window is used
and the DFT size is set to 512 points, i.e., the signal is appended
by 256 zeros in order to provide a finer sampled DFT spectrum. The
parameterM in Section 2.1.1 is set to 6 frequency bins. The training
of the models of sinusoidal signals was performed using simulated
sinusoids, with a range of linear frequency modulation.

2.2. Segmentation

The sinusoidal detection method indicates which spectro-temporal
points were detected as sinusoids. This can be considered as an ini-
tial segmentation of the acoustic scene. The following steps are per-
formed to further refine this segmentation result.

First, we consider that any detected segment which is of a very
short length was detected accidentally by error. As such, we dis-
card all segments whose length is less than 4 frames. Then, in order
to avoid accidental split of a segment due to a missed detection of
few frequency bins, interpolation between the beginning and the end
point of two detected segments is performed for all segments which
are separated by up to two frames and two frequency bins from each
other. After this, we discard all segments whose length is less than
14 frames, as it is unlikely to have bird vocalisations of such short
lengths. Since we are using real-world recordings obtained from nat-
ural environment, there are often co-vocalisations of other birds and
animals present in the audio. However, there is no time-stamp label
information available that would indicate the location of the vocali-
sations of the bird of interest in the recordings. As we do not want
to have included and model these background co-vocalisations, we
can consider that the vocalisations of bird species being recorded are
of higher energy than any other present co-vocalisations. Thus, we
discard all segments whose average energy is 15 dB below the high-
est average segment energy in each recording. Finally, we discard
all segments whose median frequency is below 2 kHz. This low fre-
quency region does not correspond to bird vocalisations in our data
and this is performed to avoid detection of segments corresponding
to human speech which is also present in the recordings.

An example of a spectrogram of an audio field recording from
the Borror data [18] containing concurrent vocalisations of two bird
species and the estimated frequency tracks before and after apply-
ing the segmentation procedure are depicted in Figure 1. It can be
seen that frequency tracks detected correspond well to vocalisations
of birds. We can see that even very weak vocalisations are detected
in the originally estimated frequency tracks (i.e., before applying the
segmentation), for instance, the high frequency components around
frequency index 120 and around frame time index 560, 600 and
1050. Listening confirmed that these were co-vocalisations of other
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Fig. 1. An example of a spectrogram (a) of audio field recording and the corresponding estimated frequency tracks initial (b) and final (c).

birds in the background. The final frequency tracks capture well the
vocalisations of birds of interest.

3. HMM-BASED BIRD SPECIES RECOGNITION SYSTEM

The segmentation and frequency track feature extraction step, as de-
scribed in Section 2, provides for a given audio recording a set of
detected segments O = {Os}Rs=1, where R is the number of de-
tected segments, with each segment being represented by a sequence
of features Os = (o1

s, . . . ,o
Ts
s ), where Ts is the number of frames

in the segment s. We treat each detected segment individually.

3.1. Modelling the Frequency Tracks

The model of each bird species is obtained by modelling the tempo-
ral evolution of frequency tracks of detected segments using a left-
to-right (no skip allowed) HMM. In this paper, a single HMM is built
for each bird species by training the model using the entire collec-
tion of detected segments from all training recordings of that species.
This could be improved in future, and is currently under our inves-
tigation, by first discovering the vocabulary set of acoustic patterns
produced by each bird species, for instance using the approach we
recently presented in [11], and then constructing and training a sep-
arate HMM to model each type of vocalisation. To account for the
variety of syllable patterns and the variations of individual instances
of vocalisations, the probability density function at each HMM state
is modelled with a mixture of Gaussians. Gaussian distributions with
a diagonal covariance matrix are used due to computational reasons,
as is typically done in speech and audio pattern processing. In exper-
imental section, we demonstrate the effect of using different number
of HMM emitting states and mixture components.

3.2. Recognition of Bird Species

We consider the identification of bird species from a finite set of bird
species based on a given utterance of testing signal recording.

For recognition, we use an HMM network consisting of a sin-
gle pass through any bird species HMM model. Using the Viterbi
algorithm, we obtain the probability p(Os|λb) of each segment s on
each bird species model λb. Considering that there are vocalisations
of only a single bird species present in the signal, we can calculate
the probability of the utterance being produced by each bird species
b as the product of the individual segment probabilities, i.e.,

p(O|λb) =
R∏

s=1

p(Os|λb), (1)

and obtain the recognised bird species as b∗ = arg maxb p(O|λb).
We explored several variations to calculating the overall prob-

ability p(O|λb) in Eq. 1. First, we used only a sub-set of the de-
tected segments, omitting a given percentage of signal segments that
achieved the lowest probability at each bird species models. Then,
since among the detected segments there may be detected vocalisa-
tions of other birds/animals which do not exist in our bird species
vocabulary, i.e., outliers, we also explored approach, similar as pre-
sented in [19], in which the segment s is omitted from the product
in Eq. 1 if its probability is lower than a given threshold on all bird
species models. Both of these modifications led to only negligible
improvements in our system.

Note that the outlined approach can also handle recognition of
multiple bird species when there are concurrent vocalisations of sev-
eral bird species present. In such case, a set of segments detected in
a given utterance will contain segments from all the birds vocalising
in the utterance. As such, this translates in our system to the prob-
lem of determining which sub-set of segments from the detected set
belong to each bird species, without knowing the identity of the bird
species and their number and is subject of our current research.

4. EXPERIMENTAL EVALUATIONS

4.1. Data description

Experimental evaluations were performed using field recordings
from [18]. These are recordings in real world natural habitats of
birds, collected over several decades, mostly in the western United
States. The recordings are encoded as mono 16-bit wav files, with
sampling rate of 48 kHz. There are several files for each bird
species, and each file is typically between one to ten minutes long.
As these are field recordings, the audio contains also background
environmental noise, vocalisations of other birds/animals and hu-
man speech. For each recording, there is a label indicating the single
bird species vocalising but there is no label information that would
indicate the start and end times of each bird vocalisation.

From the available data, we chose randomly a set of 30 bird
species. In total, we used over 33 hours of audio recordings, with be-
tween 28 to 95 minutes per bird species. The total length of detected
and used frequency track segments was 2.2 hours. For experimental
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evaluation, each recording is split into training and testing part in
proportion of two to one, respectively. The data used for testing was
further split into utterances, where each utterance consisted of signal
containing approximately a given length of detected segments.

4.2. Experimental Results

This sections presents experimental evaluations investigating the
HMM-based temporal modelling of the frequency track features.

First, we demonstrate the effect of temporal modelling of the
frequency track features using HMMs. This is compared to the use
of Gaussian mixture model (GMM), which models the distribution
of the features only, without accounting for any temporal structure.
The HMM-based system consists of 13 states; the pdf of each state
modelled with 20 mixture components. The GMM-based system
consists of 260 mixture components. As such, both systems have
the same effective number of mixture components modelling the fea-
tures. Results are presented in top part of Table 1. It can be seen that
the incorporation of temporal modelling using HMMs provides con-
siderable performance improvements over GMMs, from 33.8% to
54.1%.

Table 1. Bird species recognition accuracy obtained by GMM-based
and HMM-based system when using the frequency track features
without and with including their temporal derivatives.

Model Features Rec. Acc. (%)
GMM (260 mix) freqTrack (1d) 33.8
HMM (13 states, 20 mix) freqTrack (1d) 54.1
GMM (260 mix) freqTrack+DA (3d) 68.0
HMM (13 states, 20 mix) freqTrack+DA (3d) 84.3

The frequency track features used in the above experiments pro-
vide the frequency value at each frame time but do not include any
information about how the features vary over time. However, in
speech and audio pattern processing, it is common to append tem-
poral derivatives of features, referred to as delta (D) and acceleration
(A) features, which capture local temporal dynamics. We repeated
the above experimental evaluations employing the frequency track
features and incoporating such temporal derivatives into the repre-
sentation. The included delta and accelleration features were calcu-
lated as in [20] with window set to 3 and 2, respectively, and added to
the frequency track features, resulting in 3 dimensional (3d) feature
vectors. Results are presented in the bottom part of Table 1. It can
be seen that the performance of the GMM-based system improved
significantly from 33.8% to 68.0% as a result of including the local
temporal dynamics into the representation. A similar performance
improvement is also achieved by the HMM-based system.

Now, we evaluate the performance when using different number
of states in HMM modelling and different number of mixture com-
ponents at each state. The number of states varied from 5 to 13, with
the upper limit reflecting the minimum length of segment that could
be output from the segmentation method. These experiments were
performed using the frequency track features with incorporated delta
and acceleration features. Results are presented in Table 2. It can be
seen that increasing the number of states improves the recognition
accuracy, especially when increasing from 5 to 9. This is not surpris-
ing as the HMM in effect performs a non-linear quantisation of the
frequency track features over time. Results obtained using different
number of mixture components show that the recognition accuracy
increases as the number of mixture components increases, with the

improvement being relatively small when the number of mixtures is
above 20. The use of such high number of mixture components is
plausible, as it accounts for different types of bird vocalisations and
differences within vocalisation type across individual birds. This
was also observed by our inspection of examples of data and trained
models.

Table 2. Bird species recognition accuracy obtained by HMM-based
modelling of acoustic segments with different number of states and
mixture components per state.

Number of Rec. Acc. (%)
HMM states mixture components

5 15 69.3
9 15 81.1

13 15 82.9
13 5 75.2
13 10 79.8
13 15 82.9
13 20 84.3
13 25 85.2
13 30 85.8

Finally, we evaluated the recognition performance as a function
of the length of the detected signal used for testing, which we varied
from 1 second to 3 seconds. The results are presented in Table 3. It
can be seen that very good performance can be achieved even with
such short amount of detected signal of length as 1 second.

Table 3. Bird species recognition accuracy obtained when using
different length of detected signal.

Length of testing utterance (sec) Rec. Acc. (%)
3 85.8
2 83.9
1 80.5

5. CONCLUSION

In this paper, we presented an automatic system for recognition of
bird species from field audio recordings. The proposed system first
employed a novel method for detection of sinusoidal components in
the entire acoustic scene. This provided a segmentation of the signal
and also feature representation of each segment in terms of the de-
tected sinusoid frequencies over time, referred to as frequency track.
Hidden Markov models were employed for modelling the sequences
of frequence tracks of each bird species. Experimental evaluations
were performed on field recordings provided by the Borror Labo-
ratory of Bioacoustics. Experimental results demonstrated that the
use of HMMs for temporal modelling of the frequency track fea-
tures provided considerable performance improvements over a bag-
of-features GMM-based system. We also showed that the inclusion
of local dynamic information into the frequency tracks, as tempo-
ral derivatives, improved the performance considerably. The evalua-
tions showed that the proposed system is capable of recognising bird
species well from only few seconds of detected data.
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[11] P. Jančovič, M. Köküer, M. Zakeri, and M. Russell, “Unsuper-
vised discovery of acoustic patterns in bird vocalisations em-
ploying DTW and clustering,” European Signal Processing
Conference (EUSIPCO), Marrakech, Morocco, Sep. 2013.

[12] J. A. Kogan and D. Margoliash, “Automated recognition
of bird song elements from continuous recordings using dy-
namic time warping and hidden markov models: a comparative
study,” The Journal of the Acoustical Society of America, vol.
103, no. 4, pp. 2185–2196, Apr. 1998.

[13] T.S. Brandes, “Feature vector selection and use with hidden
Markov Models to identify frequency-modulated bioacoustic
signals amidst noise,” IEEE Trans. on Audio, Speech, and Lan-
guage Proc., vol. 16, no. 6, pp. 1173–1180, Aug. 2008.

[14] A.L. McIlraith and H.C. Card, “Birdsong recognition using
backpropagation and multivariate statistics,” IEEE Transac-
tions on Signal Processing, vol. 45, no. 11, pp. 2740–2748,
1997.

[15] C. Kwan, K.C. Ho, G. Mei, Y. Li, Z. Ren, R. Xu, Y. Zhang,
D. Lao, M. Stevenson, V. Stanford, and C. Rochet, “An

automated acoustic system to monitor and classify birds,”
EURASIP Journal on Applied Signal Processing, vol. 2006,
no. 3, pp. Article ID 96706, 2006.

[16] C.H. Lee, Y.K. Lee, and R.Z. Huang, “Automatic recognition
of bird songs using cepstral coefficients,” Journal of Infor-
mation Technology and Applications, vol. 1, no. 1, pp. 17–23,
May 2006.

[17] F. Briggs, B. Lakshminarayanan, L. Neal, X.Z. Fern, R. Raich,
S. J.K. Hadley, A.S. Hadley, and M.G. Betts, “Acoustic
classification of multiple simultaneous bird species: A multi-
instance multi-label approach,” The Journal of the Acoustical
Society of America, vol. 131, no. 6, pp. 4640–4650, 2012.

[18] “Borror Laboratory of Bioacoustics,” The Ohio State
University, Columbus, OH, all rights reserved., URL:
www.blb.biosci.ohio-state.edu.
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