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ABSTRACT

Identification of bird species based on their vocalization is studied
in this paper. The main focus is introducing a new parametric repre-
sentation of bird sounds for automatic identification of their species.
The method is based on the statistics of local temporal patterns in
bird vocalization. Two different sets of bird species are used in the
classification tests. The first set contains six species that often pro-
duce inharmonic sounds. For the second set, four species that pro-
duce very different types of sounds were added. Recognition results
using a k-NN-classifier shows improved recognition accuracy over
the results obtained by MFCC-features.

Index Terms— bird classification, permutation transformation,
feature extraction

1. INTRODUCTION

Interest towards monitoring our surrounding environment using
technology has increased during recent years. Automatic identifi-
cation of bird species based on their sounds has especially gained
much attention. However, due to the large number of bird species
as well as a multitude of different bird sounds and different noise
conditions in the recordings, there are still many challenges to be
solved. Bird species classification by their sounds is a typical audio
classification problem that starts with bird sound extraction from
continuous recordings. Next, the segmented sounds are represented
using a set of features that are used to classify segments into different
classes of bird species.

Several different parametric representations of bird sounds have
been proposed for classification of bird species or even individuals.
A majority of the features operate in the frequency domain and in-
clude Mel-frequency cepstral coefficients (MFCC) [1, 2, 3, 4], linear
predictive coefficients (LPC) [5], and wavelets [6]. Detection of si-
nusoidal components of bird sounds have efficiently been used to
represent tonal and harmonic bird sounds [7, 8, 9, 10]. Descriptive
acoustical signal parameters, such as the spectral centroid and signal
bandwidth, provide effective representations for different types of
bird sounds [11]. These features are often connected with temporal
descriptive features. Lee et al. [12] used a totally different represen-
tation of bird sounds that exploits the spectro-temporal characteris-
tics of spectrogram images.

A new parametric representation for bird sounds is proposed in
this work. The method is based on the statistics of short-term tempo-
ral patterns in the signals. The main motivation is to develop a para-
metric representation that can discriminate between many different
types of sound events that are common within birds. Another desir-
able feature is the robustness to different noise conditions as well as
minor differences in the segmentation of bird sounds. We assume
that discriminative information of sound events can be found in the
distribution of local temporal variations within the signal structure.

Also, time domain methods do not suffer from the time-frequency
resolution limitation that are exist with spectral methods.

Overall, very few studies have looked at the temporal structure of
bird sounds. The work by E. D. Chesmore [13] used 28 pre-defined
duration dependent shape patterns to transform bird sounds into a se-
ries of codes. The histogram of pairs of these codes represented sin-
gle sound events and were used to classify different species. Ches-
more achieved encouraging results in preliminary bird species recog-
nition tests. Recognition was tested with sounds of 10 species that
were recorded in a similar environmental and background noise con-
ditions.

Earlier studies concerning ordering of events have focused on the
correlation of ordered observations made by two or more observers
[14]. Recently, more attention has been focused on signal analysis
and pattern recognition in time series based on temporal structures
[15, 16, 17]. These studies have resulted in a wide number of appli-
cations, including the detection of abnormalities in aircraft engines
[18] as well as the measurement of the complexity in time series
[19]. Additionally, ordinal analysis of medical signals have been
studied during the past few years. It has been used to detect certain
patterns in EEG [20], EMG [21, 22] and neuronal activity signals
[23]. Temporal pattern features have also been used for classifica-
tion of speech consonants [24]. It is considered a difficult task when
using traditional tools and methods from speech recognition.

2. BIRD SOUNDS AND SEGMENTATION

Bird sounds can be divided by their function into call-sounds and
songs [25]. Calls are short isolated sounds that are associated with
some function, e.g., the warning of a nearby predator. Songs are
more spontaneous and consist of complex vocalizations that are
mostly produced by male birds and are often associated with ter-
ritorial defense and breeding. Therefore, many bird species sing
only during the breeding season. Birds species are often recognized
from their songs but can also be recognized from calls and hence no
distinction between songs and calls is made in this work.

The hierarchical levels in bird songs are phrases, syllables, and
elements [26]. A phrase is a series of syllables that occur in some
particular order within the song. Syllables in the phrase are typically
similar but can also be different. Syllables are constructed from el-
ements that can overlap in time and frequency. The separation of
elements can be both difficult and ambiguous and therefore the syl-
lable is considered as the basic building block of bird sounds. For
these reasons recognition of species is performed based on the clas-
sification of individual syllables.

The diversity of different sounds that birds can produce is large.
Tonal and voiced bird sounds are characterized by fundamental fre-
quency components and possibly their harmonics. The strongest
component of a harmonic sound can also be some harmonic compo-
nent [7]. Tonal and voiced sounds can also be modulated in both fre-
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Lat. Abbr. Common name Individuals songs Syllables
CORRAX Common Raven 7 33 128
CORNIX Hooded Crow 8 61 391
PICPIC Magpie 7 61 398
GARGLA Eurasian Jay 9 80 260
ACRSCH Sedge Warbler 6 20 514
ACRRIS Marsh Warbler 4 20 819
FICHYP Pied Flycatcher 8 38 365
PHYBOR Arctic Warbler 6 85 764
PARATE Coal Tit 9 42 580
PHYCOL Common Chiffchaff 14 67 1104

78 507 5323

Table 1. Birds considered in the current work. Columns: i) widely
used abbreviation derived from the Latin name, ii) common English
name, iii) the number of individuals from different species, iv) the
total number of songs, and v) syllables.

quency and amplitude [27]. In addition to these factors, bird sounds
can also be noisy, broadband or chaotic in structure [28].

Two groups of bird species are used in this work. The first group
includes the six topmost species in table 1 and are the same species
that were used in [2]. Many sounds of these birds are noisy and
inharmonic. Four bird species are added to the second group of birds
and the sounds of these additional species are largely different from
the first group of birds since they are often tonal or harmonic albeit
frequency modulated. All species with their number of recordings
and total number of syllables are presented in table 1.

2.1. Segmentation

The bird sounds in this work have been collected from several dif-
ferent sources, which include different CD-collections and record-
ings from Finnish nature recordists. The original audio files also in-
clude other undesired environmental sounds. Together with varying
background noise levels from one recording to another, segmentation
turns out to be a challenging task. In this work segmentation of bird
sounds is made using an iterative time domain algorithm that reduces
the effect of different noise conditions. First, a decibel scale energy
envelope of the signal is calculated using a 3 ms frame size and 50%
overlap between frames. IThe initial noise estimate is the global
energy minimum while the threshold for syllables is set to half of
the noise level. During the following iterations the noise estimate is
calculated from non-syllable frames and new syllables are searched
for according to the new threshold. In figure 1 an example of the
segmentation of a song by an Arctic Warbler (PHYBOR) is shown.
As can be seen in the figure, the segmentation algorithm detects all
eight syllables in the song, but detection of syllable boundaries is not
always accurate. However, we assume that minor segmentation in-
accuracies have only a small effect on the recognition accuracy since
the proposed method collects structural information from very short
time windows as will be seen in section 3.1.

3. METHODS

3.1. Permutation transformation coefficients

The parametric representation of bird syllables is based on the dis-
tribution of short temporal patterns in the signal. Patterns are repre-
sented using the permutation from ranking the signal values in short
windows (window size n). The permutation of a set corresponds to
an ordered arrangement of its elements, which are in this case the
ranking of the signal amplitude values. The rankings of n different
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Fig. 1. Segmentation of a song from an Arctic Warbler. Curve in
upper panel is the energy envelope while the lower panel is the spec-
trogram of the song. Triangles pointing up and down in the upper
panel are segment boundaries.

signal values can be ordered in n! different ways and thus n! differ-
ent possible permutations are possible. The ranking of sample values
in each window is represented by a permutation code index. Indices
from subsequent windows forms a symbolic sequence of permuta-
tion codes. Permutation codes can be seen as pointers to the corre-
sponding ranking (permutation).

The permutation transformation starts by dividing a real-valued
signal into permutation windows; a rank number replaces the signal
values in each window. The permutation of a real valued signal x(t)
at location t is denoted by πτn where τ is time delay between the
signal samples (this delay is not necessarily equal to one; the samples
picked up from the signal can be undersampled as well) and n is the
size of the permutation window. Formally, the permutation of a time
series is defined as

πτn =

(
1 2 3 · · · n
r1 r2 r3 · · · rn

)
(1)

satisfying

xt−r1τ ≥ xt−r2τ ≥ · · · ≥ xt−rn−1τ ≥ xt−rnτ (2)

where r is the ranking of the sample within the permutation
window. Note that when, e.g., τ = 2 , the permutation window
consists of every second sample in the original time domain signal.
Equal amplitude values of the original signal within the permuta-
tion window are assumed to be very rare but if they occur we define
rt > rt−1.

Each permutation pattern is coded with its symbolic reference
and these placed in series form a permutation code sequence. Each
value in this index sequence points to a permutation correspond-
ing to the ranking or ordering of the present signal sample values
within the permutation window. In this work, the permutation code
corresponds to relative signal values of five values, thus there are
5! = 120 possible permutations and also 120 possible values that
the permutation code may obtain.
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3.2. Permutation code pairs

Next, a permutation pair frequency (PPF) matrix is constructed from
the permutation code sequence. It is a parametric representation for
audio events that describes the histogram of the frequency of permu-
tation transitions (permutation pairs) in the sequence. The PPF ma-
trix can also be created using different time lags, which describe the
time delay between two permutations (corresponding to the window
hop size) in the permutation code sequence and delay (in samples)
between permutation windows in the original signal. PPF matrices
are then used as statistical models of the signals in the classification
tests. The PPF matrix is formally defined as

A(πi, πj) =
n(πi, πj)

N
(3)

where n(πi, πj) is the total number of permutation code pairs
at the chosen time lag of the sequence, and N =

∑
n(πi, πj) is a

normalization coefficient.
In order to increase the robustness of the method, PPF ma-

trixes are smoothed using a spatial filter. The PPF matrix cannot be
smoothed directly because each element in the matrix refers to a pair
of permutation codes and neighbouring elements in the PPF matrix
are typically not neighbouring permutations. The spatial filter is
applied to the PPF matrices through Kendall’s distance dk that can
be solved from the corresponding Kendall’s tau (correlation of two
permutations) [14] defined as

τk(πi, πj) = 1− 2dk(πi, πj)

dkmax

(4)

where dk is Kendall’s distance (also known as Kendall’s met-
ric). It is defined as the minimum number of local, elementary per-
mutations needed to reorganize a permutation πb to form the per-
mutation πa. The elementary permutation interchanges neighbor-
ing elements, e.g., {1234} → {2134} has dk = 1. The term
dkmax in Eq. (4) is the minimum number of elementary permuta-
tions needed to organize a permutation into its reverse permutation,
e.g., {2134} → {4312} and it is given by

dkmax =
n(n− 1)

2
(5)

The PPF matrix is smoothed by a weighted spatial filter by

G(πi, πj) =

dkmax∑
dk

w(dk)A(πi, πj) (6)

wherew(a) is a weighting function and dk is Kendall’s distance.
The applied weighting function is:

w(dk) =


1 dk = 0
1

2dk
dk = 1, 2, 3,

0 otherwise
(7)

where k is the order of the spatial filter.

3.3. Classification

In this work the classification was done using a k-Nearest Neigh-
bours (k-NN) method. The nearest neighbour of a test feature vector
is a vector in the training data set that has the minimum distance to
the test features. In the k-NN method, the test vector is assigned to
the class which is most often represented in the k-nearest neighbour.

Euclidean distance measures were used to calculate the distances be-
tween feature vectors.

The n-fold cross validation was used in splitting the segmented
syllables from the database into training and testing data sets. With
this method it is possible to use all available data for training and
testing and still maintain the individual independence between train-
ing and testing data sets. Syllables left out from the training data set
were selected so that those were never compared with syllables from
the same recording (individual). Syllables from the same individ-
ual are most likely correlated and by including those in the training
and testing data sets would have resulted in an overly optimistic er-
ror probability. Thus the number of folds varied between different
species according to the number of recordings.

Classifications were also performed for entire songs by integrat-
ing the classification of the individual syllables in songs. Songs were
assigned to the class where most of the syllables in the song were
classified.

The PPF matrix is n! × n! elements in size, which becomes
computationally infeasible for large values of n. In general, PPF-
matrixes become sparse or its elements have very low values. The
dimension of the PPF-matrix can be decreased by selecting only fea-
tures that have the highest values for classification. Dimension re-
duction decreases the computational load and it may also increase
the classification accuracy by removing noisy elements from the
PPF-matrices.

4. RESULTS

Recognition performance was tested for two sets of bird species de-
scribed in Section 2. The average classification rates for species
classification are presented in figures 2 and 3. Results indicate the
percentage of correctly classified syllables and songs. Recognition
results show an increasing recognition rate when the spatial filter is
applied, especially for the classification of songs or a series of call
sounds. However, increasing the feature vector size does not always
increase recognition accuracy, especially when smoothing is not ap-
plied. For comparison, the recognition rate was also calculated using
MFCC-features using a 256 sample frame size with a 50% overlap of
adjacent frames. Recognition rates for the first group of birds were
65% and 57% for correctly recognized syllables and songs (or se-
ries of call-sounds) while for the second set of birds the recognition
results were 61% and 59%, respectively.

5. CONCLUSIONS

Birds can produce a myriad of different types of sounds. An optimal
feature representation for each type of sound could be reasonable,
but in automatic classification this would require the detection of the
type of sound first. In this work a method that is able to represent
different types of sounds was introduced. The classification accu-
racy of syllables was almost the same for permutation features and
MFCC-features, but for song classification the permutation meth-
ods performed significantly better. This seems to indicate that PPF-
matrixes are more robust in representing sounds that may have been
incorrectly segmented.

PPF-matrix smoothing clearly increases recognition accuracy in
both syllable and song classification. Smoothing reduces noise in
PPF-matrixes and emphasizes the influence of an often existing tem-
poral pattern pair. However, at the same time smoothing reduces the
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Fig. 2. Average recognition accuracy for the first set of bird species
as a function of the size of the feature vector (PPF-matrix). Results
indicate classification for syllables (syl) and songs or series of calls
(song) varying the order of the spatial filter (k).
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Fig. 3. Average recognition accuracy for the second set of bird
species as a function of the size of the feature vector (PPF-matrix).
Results indicate classification for syllables (syl) and songs or series
of calls (song) varying the order of the spatial filter (k).

sparsity of the PPF-matrixes and increases computational complex-
ity.

Overall classification results showed that essential information
for accurate classification of different types of audio events can be
found in short time windows. in future work more attention should
be paid to finding only those temporal patterns that discriminate be-
tween different classes. This would probably increase classification
accuracy while at the same time would decrease computational com-
plexity.
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