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ABSTRACT

This paper introduces a supervised statistical framework for
estimating the signal-to-noise (SNR) ratio of speech signals.
Information on how noise corrupts a signal can help us com-
pensate for its effects, especially in real life applications
where the usual assumption of white Gaussian noise does not
hold and speech boundaries in the signal are not known. We
use features from which we can detect speech regions in a
signal, without using Voice Activity Detection, and estimate
the energies of those regions. Then we use these features
to train ordinary least squares regression models for various
noise types. We compare this supervised method with state-
of-the-art SNR estimation algorithms and show its superior
performance with respect to the tested noise types.

Index Terms— signal-to-noise ratio estimation, speech
signal processing, supervised learning

1. INTRODUCTION AND RELATED WORK

Signal to noise ratio (SNR) is one of the most fundamental
metrics used in signal processing. It is defined as the ratio
of signal power to noise power expressed in decibels (dB),
and gives information about the level of background noise
present in a speech (or other) signal. Its estimation in prac-
tice is however challenged by the diversity in the types and
manner in which a signal can get corrupted. Moreover, the
inherent variability in the signal itself (e.g., speech) adds an
additional layer of challenge to SNR computation. Therefore,
it is vitally important to study and estimate the effect of noise
on the original signal in meaningful ways.

Speech processing in real life is challenged by a variety of
environment and channel noise conditions making the design
of robust applications an ongoing quest. For example, there
is a renewed effort on robust Voice Activity Detection under
the DARPA RATS program wherein the speech signal is de-
graded by a variety of, possibly unknown, channel conditions.
This paper focuses on improved SNR computation especially
targeting noisy speech signals.

Robust estimation of speech signal’s SNR in turn can help
guide the design of robust applications including Automatic
Speech Recognition (e.g. [1], [2]), speech enhancement (e.g.
[3], [4], [5]), and noise suppression [6].

Manymethods have been proposed in literature for speech
SNR estimation. In [7] the authors employ Voice Activity

Detection (VAD) techniques to separate speech and noise re-
gions and estimate SNR from the respective power in those
regions. Ephraim and Malah in [3] derived a short-term spec-
tral amplitude (STSA) estimator which minimizes the mean-
square error of the spectral magnitude to estimate the a-priori
SNR. This work has been the foundation for many subsequent
research efforts (e.g. [4],[8], [9], [10]) and has resulted in
many variations and improvements of the original algorithm.

The NIST SNR measurement ([11]) uses a method based
on sequential Gaussian mixture estimation to model the noise.
It then creates a short-time energy histogram which is used to
estimate the energy distributions of the signal and noise from
which SNR is estimated.

Other approaches rely on estimation of the speech and
noise spectra (e.g. [1]), or track spectral minima in frequency
bands which are used for optimal smoothing of the power
spectral density (PSD) of the noisy speech signal, and use
the estimated PSD and statistics of the spectral minima for a
noise estimator (e.g. [12], [13]).

Finally, there are methods that make assumptions about
the distribution of the signal, noise, or both in order to esti-
mate the relative energy of each (e.g. [14]). While others use
statistics from waveform samples, i.e. in [15] kurtosis values
are used to estimate SNR in each frequency band.

Our proposed method is based on features that capture
the presence of speech in the noisy signal and formulates
a regression model, estimating its coefficients with ordinary
least squares. It should be noted that our scheme does not re-
quire a Voice Activity Detection step. Our system supports
two functionalities. First, we assume that we already know
what kind of noise corrupts the signal and we use the the ap-
propriate regression model. In the second case, we have no
prior knowledge about the kind of noise that corrupts the sig-
nal .We use a classifier to identify the kind of noise and use
the appropriate regression model. We compare our method
with other state-of-the-art estimation algorithms such as the
NIST SNR measurement ([11]) and theWaveform Amplitude
Distribution Analysis (WADA) presented in [14]. Our ex-
periments demonstrate that the proposed method outperforms
these state-of-the-art systems.

In section 2 we present the features we use as well as the
formulation of our algorithm. In section 3 we describe our
experimental setup and how we chose the various parameters
of our model. In section 4 we show the results of our SNR
estimation method and compare it with other SNR estimation
methods. Finally in section 5 we present our conclusions and
discuss future work directions for the SNR estimation task.
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2. METHODOLOGY

In this work, our goal is to estimate the SNR of spontaneous
speech signals or signals where speech boundaries are not
available to us. Although, there are different kinds of SNR
criteria, such as Global SNR, Local SNR, Segmental SNR
([7]), we focus on the estimation of Global SNR. Global SNR
gives us information about the effect of noise on the whole
signal and is defined as:

SNR = 10 · log
10

√
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N

∑N

i=1
s2(i)
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where the numerator is the root-mean square of the speech
signal and the denominator is the root-mean square of the
noise signal, expressing their respective energies P(S) and
P(N).

Assuming that the noise is additive, the observed signal
x(i) is a sum of the speech signal s(i) and the noise signal
n(i), x(i) = s(i)+n(i), i being the time index. Furthermore,
if the speech and noise signals are independent and zero-mean
we can rewrite equation (1) as:

SNR = 10 · log
10

P(X)−P(N)

P(N)
(2)

which will be the basis of our estimation formulae.
Our approach focuses on finding regions of speech pres-

ence (and absense) in the signal without requiring VAD. We
measure the respective energies of these regions, and create
SNR estimators based on the formula of equation (2). Af-
terwards, we create a regression model, which we train with
ordinary least squares and get our final SNR estimation.

To distinguish the regions of speech presence and absence
in the signal we use a variety of features such as long-term
energy, variability, pitch, and voicing probability. We take
percentile windows of those features and calculate the ener-
gies P(X) and P(N) corresponding to those windows. The
bands of high and low energies offer a reasonable approxima-
tion for representing speech from noisy speech regions. Such
an estimate can be expressed as:

Ec−d

a−b
= 10 · log
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P(Xd
c
)−P(Xb

a
)

P(Xb
a
)

(3)

where the values a, b, c, d correspond to percentile values
where energy is concentrated. For example, if a = 90% and
b = 95% then the expressionP(Xb

a) is the average energy of
the regionwhere 90% to 95% of energy is concentrated. Since
signals can be of arbitrary length and speech boundaries are
unknown we make these estimates by using different empiri-
cal choices for windows defined by the values of a, b, c, d.

Moreover, since the transitions of both energy and fea-
ture values are abrupt we apply smoothing to increase the
robustness of the estimates. However, since smoothing also
alters the original values we use different smoothing window
lengths in an attempt to both balance the robustness of the es-
timates and retain the original feature and energy values. In
the following sections, we examine the features we used in
more detail.

2.1. Long-Term Energy

Since SNR is the ration of energies, we first calculate the
long-term energy in each frame from the spectrogram (the av-
erage energy in each frame). Then we apply different smooth-
ing windows, using the moving average smoothing method.

For every case of smoothing window length, we estimate
P(X) and P(N) by taking percentile windows on the long-
term energy and substitute those values in (3). So, for differ-
ent smoothing windows and energy regions we have different
features.

2.2. Long-Term Signal Variability (LTSV)

Long-Term Signal Variability (LTSV) was proposed in [16]
and is a way of measuring the degree of non-stationarity in
a signal. Since speech is non-stationary, we can use LTSV
to identify speech regions in a signal. Hence, we can make
estimates of P(X) and P(N) based on percentage regions
of variability and measure the respective energies of those
regions. For example, when noise is stationary we can de-
duce that speech is present in the region where 85% to 90% of
LTSV is concentrated. On the other hand, in the region 10%
to 15% where LTSV is concentrated only noise is present.

An estimate based on variability is similar to the one of
equation (3), where the windows of energy used for the esti-
mates correspond to regions of the LTSV. However, before we
compute those estimates we first apply smoothing windows
on LTSV and median filtering on the corresponding energy
regions.

2.3. Pitch

Another measure we can use to identify speech regions is
through pitch detection. We use the openSMILE software,
[17], to extract pitch information from the signal. Since pitch
transitions are abrupt, and speech exists in the neighbour of
pitch regions we apply smoothing on the outcome of pitch de-
tection. Afterwards, we estimate P(X) and P(N) based on
percentage regions of pitch presence in the signal in a similar
fashion as in equation (3).

2.4. Voicing Probability

The final measure we employ to identify speech regions is the
voicing probability. We use the openSMILE software ([17])
to calculate the voicing probability in each frame. Higher val-
ues of voicing indicate speech presence while lower indicate
speech absence.

2.5. System Description

Based on the features described we created regression models
for different types of noise (white, pink, car interior, machine
gun, and babble speech noise). We chose these types of noises
to test how our methods performs under both stationary and
nonstationary noise conditions.

Our system supports two use cases. In the first case, we
assume that we already know what kind of noise corrupts the
signal and we use a linear regression model for every noise
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kind. The SNR estimation is based on the features we de-
scribed and is given by:

ŜNR =

M
∑

i=1

ai · fi + ǫ (4)

where M is the number of features, ǫ is the disturbance
term, ai and fi are the regression coefficients and the regres-
sors respectively.

In the second case, we have no prior knowledge about
the kind of noise that corrupts the signal. Instead, we use a
classification scheme to identify the noise type and use the
appropriate regression model. n [18], the authors use a K-
Nearest Neighbour Classifier (KNN) classifier based on Bark
scale features to classify noise types. In our work we have
used a KNN classifier on 13 MFCCs.

3. EXPERIMENTAL SETUP

The total number of regressors we used in our models is 312
(24 from long-term energy, 216 from LTSV, 36 from pitch
and 36 from voicing) and we estimate the features’ coeffi-
cients with ordinary least squares. The regressors result from
a combination of smoothing window lengths and regions of
the features from which we make energy estimations accord-
ing to the formula 3.

In the case of Long Term Energy and LTSV the window
length ranges from 0.3ms to 1.8ms with a 0.3ms step, while in
Pitch and Voicing Probability the window lengths are 0.9ms,
1.6ms, 2.2ms, 2.8ms, 3.4ms, and 4.1ms. The value pairs
a, b, c, d in 3 we used to estimate the energies are shown in
table 1

a b c d

85% 95% 5% 15%

80% 90% 10% 20%
75% 85% 15% 25%

5% 15% 85% 95%
10% 20% 80% 90%

15% 25% 75% 85%

Table 1. Percentile Pair values of pitch windows from which
we calculate the average energy

These values where the result of experimental procedure.
Our experiments showed that adding more features (i.e. more
smoothing windows, etc) boosts the performance of the esti-
mation. Since this is a work in progress, in the future we plan
to provide detailed analysis of the impact each feature has on
the model.

For every noise type we used 1680 clean speech files from
the TIMIT Database sampled at 16KHz in which we intro-
duced silence periods randomly selected between 3 and 10
seconds to create signals with unknown speech boundaries.
Then we added noise at six SNR levels (-5dB, 0dB, 5dB,
10dB, 15dB, 20dB), resulting in a total of 10080 training sam-
ples per regression model.

For the KNN classifier we used 20 nearest neighbors
(K=20) based on 13 MFCCs. We used the same set of 1680
files (adding noise for every SNR level) to train the KNN
classifier. The final decision is made by calculating the
probability of each class in every frame and then follows a
majority vote.

4. EXPERIMENTAL RESULTS

We have tested our system for five different noise types. We
randomly selected 150 files from the TIMIT database (there
was no overlap between the training and testing files). In
each file we introduced 3 to 10 seconds silence regions and
then added noise at 6 different SNR levels. We compared our
method with the WADA and NIST SNR estimation methods
using the mean absolute error metric. In all cases we found
that our method outperforms the other methods.
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Fig. 1. Mean absolute error for White Noise.
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Fig. 2. Mean absolute error for Pink Noise.

In figures 1, 2,3 the results of white, pink and car interior
noise are presented. By comparing the mean absolute error
of our method and the WADA and NIST SNR method for 6
different SNR levels,it is clear that our method provides better
estimates for every SNR level (difference in error ranges from
0.3db to 7db).

In the case of machine gun noise (figure 4) our method
greatly outperforms the other methods (difference in mean
absolute error is about 30db). Both WADA and NIST SNR
fail to provide accurate estimates as shown from their mean
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Fig. 3. Mean absolute error for Car Interior Noise.
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Fig. 4. Mean absolute error for Machine Gun Noise.

absolute error values. The reason for this is that our method
does not make any assumptions about stationarity. Also this
indicates that our method can perform well across different
noise types with different characteristics.
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Fig. 5. Mean absolute error for Babble Speech Noise.

Finally, in the case of Babble Speech Noise (figure 5) we
can see that only for 0dB the WADA method performs better.
Since babble speech noise is similar to speech some of our
features(i.e. pitch,voicing) fail at same energy levels. How-
ever, our method gives better estimates overall.

The above results refer to the case where we know the
type of noise that corrupts the signal and we choose the ap-
propriate regression model. In the second set of experiments
we used the same test set of files. In every case we corrupted

a signal with a noise that was used for training the KNN clas-
sifier, the signal was correctly classified and the appropriate
regression model was used. Since our classifier achieved per-
fect accuracy for the given set of noises, we tried to corrupt
a signal with high frequency Noise (which was not used for
training the classifier). The classifier chose the regression
model for white noise. In figure 6 we can see the results when
we corrupted signals with high frequency noise and used the
white noise regression model to estimate the SNR.
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Fig. 6. Mean absolute error for High Frequency Noise by
using the regression model of white noise.

In all the cases we examined our method outperforms
other state-of-the-art methods, especially when the kind of
noise that corrupts the signal is known. When the noise is
unknown the performance of our method depends on the
outcome of the KNN classifier, for instance in the example
of high frequency noise if the classifier chose the regression
model of machine gun noise we would have failed to provide
accurate SNR estimates.

5. CONCLUSIONS AND FUTUREWORK

We have presented a novel method for Global SNR estimation
using regressionmodels which are trained on features that can
be ranked by presence of speech. We tested our method for
various noise types with different statistical properties and
demonstrated that it successfully provides an accurate SNR
estimation. Furthermore, we compared our work with two
other SNR estimation algorithms (WADA, NIST SNR) and
the proposed method in general outperforms across all exper-
imental conditions.

Finally, we plan to attempt to generalize across noise
types. Moreover, we want to improve our channel classifica-
tion by employing features that can capture noise character-
istics, since it is well known that MFCCs are not very robust
under noise conditions. We also plan to test more advanced
classifiers (e.g. DBN-DNN, SVMs, etc) as well as adaptive
schemes and soft assignment approaches that will generalize
better for unseen noise conditions.
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