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ABSTRACT

Acoustic environment recognition has been widely used in

many applications, and is a considerable difficult problem for

the real-life and complex environment. This paper proposes a

novel feature, named minimum statistics project coefficients

(MSPC), and intents to solve this problem. The MSPC feature

is extracted from the background sound which is more robust

than the foreground sound for the task of acoustic environ-

ment recognition. Experimental results show the outstanding

performance of the MSPC feature compared with the conven-

tional acoustic features, especially in very complex acoustic

environments.

Index Terms— Acoustic environment recognition (AER),

background sound/noise, sound event, minimum statistics.

1. INTRODUCTION

Acoustic environment recognition (AER), which is referred

to classifying different sound environments depending only

on sound information and intents to answer ”Where am I in

the acoustic space ?”, can be widely used in many applica-

tion scenarios. These scenarios include audio classification

and segmentation, robotic navigation [1, 2], mobile robots [3],

mobile device-based services, audio retrieval [4], audio foren-

sics [5], and other wearable and context-aware applications.

Moreover, understanding the acoustic environments can pro-

vide an effective and efficient way to prune out irrelevant sce-

narios and sound events, which have important advantages in

acoustic/sound event detection [6]. Although there are many

efforts on AER, the distance is far from the practical applica-

tions in real-life.

Research in general AER has received more interest in

the last years. Two main strategies are usually employed in
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exploring the problem of AER. The first normally focuses on

the recognition of discrete sound effects or specific acous-

tic/sound events in an environment, by pre-extracting and

modelling them [6–11]. In these studies, they believe that the

acoustic environment can be characterized by the presence

of individual sound events [6, 9–11], or a mixture of the key

audio effects and the background sounds [7, 8]. These meth-

ods are similar to that used in the document classification by

key words. Obviously, the performance of the AER is mainly

depended on the recognition accuracy of the sound events

or key audio effects. However, these methods suffer some

drawbacks in real-life sound environments: 1) These sound

events or key audio effects require to be manually defined and

selected; 2) There are a large number of these sound events or

key audio effects in real-life environment, and it is unrealistic

to define and select all of them; 3) It is difficult to sure that

some sound events or key audio effects must be emerging

in a specific acoustic environment; 4) Some sound events

or key audio effects can also be heard in different acoustic

environment.

The second strategy intends to characterize the general

acoustic environment type as a whole [12–17]. Based on the

assumption that the acoustic environment can be character-

ized by all sounds in it, the features, therefore, are extracted

from these sounds. The features or their combinations contain

both conventional acoustic features used in [12–15], such as

Mel-frequency Cepstral coefficients (MFCC), linear predic-

tion coding coefficients (LPC), linear prediction Cepstral co-

efficients (LPCC), and more complex features in [12, 15, 17],

such as matching pursuit (MP) and independent component

analysis (ICA) features. Unfortunately, the above assumption

is not true in the real-life acoustic environment, especially in

the complex environment where a large number of and many

types of sounds occur simultaneously. For instance, it is dif-

ficult to decide whether the talk of some people is belong to

an office acoustic environment or not. Therefore, the second

strategy also suffers the analogous drawbacks in the first strat-

egy.

In this paper, we also consider the acoustic environment
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type as a whole, and focus on the problem of robust feature

extraction. To this end, all the sounds in a specific acous-

tic environment can be viewed as two parts: the foreground

sounds and the background sounds or background noises.

The foreground sounds are usually the dominant sounds and

can be easily heard, but they are not robust for recogniz-

ing acoustic environment due to the analogous drawbacks

in the first strategy. However, we find that the background

sounds are very robust for AER in our work. A novel feature,

which is extracted from the background sounds and named

minimum statistics project coefficients (MSPC), is proposed

by using the tracking minimum statistics algorithm [18–20].

Next, each acoustic environment is modelled by a Gaussian

Mixture Model (GMM), and the recognition is performed

based on the likelihood of each model. The experimental

results show the robust performance of the proposed feature,

especially in very complex acoustic environments.

2. MSPC FEATURE AND ACOUSTIC

ENVIRONMENT RECOGNITION

2.1. Tracking minimum statistics of background sound

spectrum

By viewing all sounds in an acoustic environment as two

parts: foreground and background sounds, we consider the

observed sound signal y as the sum of a foreground sound s

and a background sound n, y = s + n. Similar to the idea

of tracking noise components in [18–20], we assume that

the spectrum of the background sound has the minimum of

the spectrum energy in a local time-frequency window, since

the foreground sound is dominant and has more spectrum

energy. Tracking the minimum statistics (MS) for feature

extraction from the background sound spectrum is carried out

as follows.

Firstly, the observed sound signal y is divided into frames

by an analysis window function and is analyzed by using the

short-time Fourier transform (STFT):

Y (l,m) =

N−1
∑

n=0

y(n+ lH)w(n) exp

(

−j
2π

N
nm

)

(1)

where n is the sampling time index, N is the size of the STFT,

m is the frequency bin index, l is the time frame index, w is

an analysis window, and H is the hop size.

Secondly, the smoothing is carried out in both frequency

and time [18, 19], respectively. The frequency smoothing of

the power spectrum in each frame is defined by

Pf (l,m) =

B
∑

i=−B

b(i)|Y (l,m− i)|2 (2)

where b denotes a normalized window function of length

2B + 1, i.e.,
∑B

i=−B b(i) = 1. The smoothing in time is

performed by a first-order recursive averaging

P (l,m) = αsP (l − 1,m) + (1 − αs)Pf (l,m) (3)

where αs(0 < αs < 1) is the smoothing parameter.

Finally, the MS of the power spectrum is tracked by the

following non-linear rule [20]:

X(l,m) =











γX(l− 1,m)+
1− γ

1− β
(P (l,m)− βP (l − 1,m)),

if X(l− 1,m) < P (l,m)
P (l,m), if otherwise

(4)

where β and γ are constants which are determined experimen-

tally (we set β = 0.8 and γ = 0.995 throughout this paper).

X(l,m) mainly captures the information of the background

sound and part information of the foreground sound.

2.2. Feature extraction

The MS calculated from the l frame can be viewed as a vector,

say x̄l ∈ R
N , and x̄l = [X(l, 0), · · · , X(l, N − 1)]T . The

vector x̄l is converted to the log-scale:

x̂l = 10 log
10
(x̄l) (5)

and is normalized:

xl =
x̂l

‖x̂l‖
(6)

which is called log-scaled and normalized minimum statistics

(LNMS) vector. The LNMS vectors, however, are unsuitable

to be directly used as the feature in classification tasks due

to its high dimensional. Hence, these vectors require to be

transformed into a low-dimensional subspace to obtain more

effective representations by using principal component analy-

sis (PCA) or independent component analysis (ICA) as done

in [17, 21].

Here, the eigenvalue decomposition (ED) is performed to

extract the basis vectors of the subspace and to obtain the

reduced-dimension features. Given the training data which

contains L frames, the LNMS vectors calculated from the

training data can be written as a matrix, X ∈ R
L×N and X =

[x1, · · · ,xL]
T , where L is the total number of frames and

N is the number of frequency bins. The covariance matrix

C ∈ R
N×N of the LNMS matrix X is given by C = X

T
X,

and the ED is defined as

C = UΛU
T (7)

where U ∈ R
N×N is a unitary matrix and contains the eigen-

vectors as columns, Λ is the diagonal matrix containing the

eigenvalues λ1, · · · , λN such that λ1 ≥ λ2 ≥ · · · ≥ λN ≥ 0.

To perform dimensionality reduction, only the first K basis

vectors of U are retained, i.e. the first K columns of U, and
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is denoted by UK ∈ R
N×K . Therefore, the K-dimensional

basis project feature of LNMS vector x, z ∈ R
K , can be given

by

z = U
T
Kx (8)

The new feature vector z is called minimum statistics projec-

tion coefficients (MSPC) feature, since it is the vector of the

projection coefficients of the MS against the basis vectors.

The MSPC feature is used for training statistical models and

performing the classification task.

2.3. GMM classifier for recognition

We use GMM as the classifier for recognizing sound environ-

ments. The GMM with M components for the c-th class is

defined by

pc(z) = p(z|c) =
M
∑

m=1

πc
mN (z|µµµc

m,ΣΣΣc
m) (9)

where z is the input feature,µµµc
m andΣΣΣc

m denote the mean and

the covariance of the Gaussian distribution N (z|µµµc
m,ΣΣΣc

m),
and πc

m is the weighting parameters of the m-th Gaussian

component. In the training phase, the model parameters

for the c-th class are estimated by maximum likelihood es-

timation using Expectation-maximization (EM) algorithm

on training data of the c-th class. In the testing phase, the

likelihood of the features of the input segment of each class

model is calculated by using Eq. (9), and the segment can

be classified into the c∗-th class with maximum likelihood as

follows

c∗ = argmax
c

pc(z|c) (10)

3. EXPERIMENTAL EVALUATION

3.1. Experimental Setup

To investigate the performance of the proposed MSPC fea-

ture, the empirical evaluation was performed on seventeen

different types of environmental sounds. These environment

types considered were airport, basketball, beach, bus, cele-

bration, classroom, countryside, football, highway, kitchen,

market, office, party, protest, restaurant, street, train. The en-

vironmental sounds used for the material were collected from

[22]. Each of environmental types consisted of 5 to 8 record-

ings, and each of these recordings of varying lengths (3–6

minute long) was recorded in real-life environments from dif-

ferent locations. Each recording contained a lot of sound

events, some of which were also contained in other record-

ings of different environments. For instance, speech could be

clearly heard in office, restaurant, and protest environments.

Moreover, all the recordings were converted into WAV for-

mats and downsampled to 22050 Hz sampling rate, mono-

channel, and 16 bits per sample.

For the modelling and recognition of environmental

sounds, all recordings were first divided up into the 2 s seg-

ments. The total number of these segments was 8408 about

4.67 hours. Then, GMM classifiers for each concept were

trained on 60% of these segments, and tested on the remain-

ing 40%, selected at random. Furthermore, all features were

calculated from a rectangle window of 256 points (11.6 ms

with nonoverlap), and all results showed in the following ex-

periments were averaged over 5 trials by randomly selecting

the training and testing sets.

3.2. Comparison of overall recognition accuracy

Several major features, such as MFCC, LPC, and LPCC,

were commonly used in audio signal processing, and hence

the recognition accuracy of MSPC feature was compared

with these conventional features. In the current experiment,

12-dimensional MSPC, 12-dimensional MFCC, and 10-order

LPC and LPCC features were used for training the GMMs,

respectively. The GMMs for each class were trained with 9

mixtures.

Figure 1 shows the recognition rates of these four features

across all 17 classes. Firstly, MSPC and MFCC achieve bet-

ter average recognition rates (87.1% and 69.5%) than LPC

and LPCC (16.9% and 13.4%). Especially, LPC and LPCC

almost lose their abilities of classification in some sound envi-

ronments, such as basketball, celebration, classroom, restau-

rant. The LPC and LPCC features are designed to capture the

resonance of the vocal tract of a single sound source, but the

acoustic environments in the current experiment contain a lot

of varying sound sources, which is the important reason of the

poor performances of these features. Moreover, the LPC and

LPCC obtain comparatively higher recognition rates in bus,

countryside, kitchen than in other acoustic environments. The

reason is that these acoustic environments contain compara-

tively fewer sound sources, and the temporal overlapping of

these sound sources is not often.

Secondly, figure 1 shows that MSPC achieves a better

average recognition rate (87.1%) than MFCC (69.5%). Es-

pecially, MSPC obtains outstanding performance in acous-

tic environments of celebration, office, party, protest, restau-

rant, street, where MFCC shows very poor recognition per-

formances. Obviously, these acoustic environments contain a

large number of sound events which are overlapping simulta-

neously. The same sound events can be heard in different en-

vironments, while the different sound events can be heard in

the same environment. For instance, loud voices can be heard

in celebration, office, protest, street environments, while loud

voices and police siren can be heard in street environments.

Although the existence of sound events can not stably indi-

cate what the sound environment is, these sound events usu-

ally have much more energy than background sounds and be-

come the dominant sounds of the current acoustic environ-

ment. The MFCC is designed to capture the characteristics of
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Fig. 1. Recognition accuracy across all 17 classes obtained and overall average accuracy with different features (MSPC, MFCC,

LPC, and LPCC) using GMM with segment length of 2 s.

the spectral envelope of a sound, and therefore the MFCC in

fact represents the information of the dominant sound events

in sound environments. This results in the poor performance

of the MFCC in some complex sound environments. In con-

trast with the MFCC, the MSPC can capture the information

of the background sounds which are more robust than the

sound events in the task of AER, and achieves better recog-

nition rates, especially for recognizing very complex acoustic

environments.

Thirdly, figure 1 shows that MSPC achieves better or

slightly better recognition rates than MFCC in some com-

paratively simple acoustic environments, such as beach, bus,

countryside, highway, train. These acoustic environments

usually contain fewer sound events, and can be recognized

by modelling these dominant sound events. This is the rea-

son that MFCC can obtain their good performance in these

acoustic environments. Although MSPC feature loses some

information of the dominant sound events since it only traces

the minima of the spectral components, it still outperforms

MFCC in these acoustic environments. This result also shows

the robustness of the MSPC feature for AER.

Moreover, figure 2 shows the average recognition accura-

cies of MSPC and MFCC increase with the number of mix-

tures of GMM. When the number of mixtures is larger than 8,

the performance increase slightly for both MSPC and MFCC,

MSPC outperforms MFCC in any number of mixtures, from

1 to 20. Also, figure 3 shows the average recognition accu-

racy of MSPC increase with the number of K which is the

dimension of the MSPC feature. According to this figure, a

tradeoff between recognition accuracy and reduce dimension

can be found.

4. CONCLUSION

We present in this paper a novel robust MSPC feature for

AER by tracking minimum statistics of the background sound
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Fig. 2. Average recognition accuracies of MSPC and MFFC

using GMM with a varing number of mixtures.
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Fig. 3. Average recognition accuracy of MSPC with varying

number of K .

spectrum. The MSPC feature can capture most of characteris-

tics of background sound and little information of foreground

sounds. The performance of MSPC feature outperforms the

performance of the conventional acoustic features in all of the

seventeen types of acoustic environments, especially in very

complex environments. This revealed that the background
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sounds are more important and robust than the foreground

sounds in the task of AER.
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