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ABSTRACT

This paper investigates an implication of the clustering, on
the complex plane, of the roots of transfer function polyno-
mials obtained from acoustic responses. These polynomials
can be the high order transfer functions obtained from room
impulse responses or the relatively lower order ones obtained
from head related impulse responses. This clustering behav-
ior is explained using results from the theory of the roots of
random polynomials. It is demonstrated that, although they
do not appear that way, the coefficients of acoustic polynomi-
als can be modeled as random polynomials with certain con-
straints applied. In the case of room impulse responses, the
median of their clustered roots is shown to be directly related
to the reverberation time of the room. This is shown to be
an accurate measure of the reverberation time by comparison
with other estimation techniques.

Index Terms— Reverberation, Random Polynomials

1. INTRODUCTION

The work of Erdős and Turan [1] and later the work of Shepp
and Vanderbei [2] among others, showed that polynomials
of infinite order, whose coefficients were modeled as ran-
dom variables distributed according to a small subset of sta-
ble probability distributions, would have roots which clus-
tered uniformly about the unit circle. Continued work on this
topic has extended the range of applicable distribution and has
shown the results can apply to finite order random polynomi-
als. In their 2008 paper Hughes and Nikeghbali [3] formu-
lated a set of results, based upon Erdős and Turan’s original
proof, that required no independence restriction on the ran-
dom variables. They simply require that the first and last co-
efficients of the finite order random polynomial be non-zero
in order to calculate both a lower bound for the number of
roots to be found within an annular region embracing the unit
circle and a lower bound on the number of roots in each an-
gular sub division of this annulus.
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The authors have examined [4] the statistical distribu-
tion of the coefficients of common acoustic responses such
as head related impulse responses (HRIRs) and room impulse
responses (RIRs). We have shown that, despite exhibiting
features such as exponential decay and onset delays, these
responses’ root distributions essentially behave in the same
way as those of random polynomials. That investigation ex-
plained results, from our earlier work [5, 6], on extracting
common sub-systems from sets of HRIRs through a process
that amounts to seeking an approximate Greatest Common
Divisor of the equivalent set of z-domain transfer functions.
Our investigation of the role of root clustering in this approx-
imate factorization of acoustic responses also introduced an
application of this analysis to headphone equalization. In this
paper we explore the relationship between the positioning and
range of these annular clusters of roots for RIRs and we show
that we can obtain an accurate measure of the room (RT60)
reverberation time from this information.

2. ACOUSTIC IMPULSE RESPONSES AS RANDOM
POLYNOMIALS

To appraise the statistical distribution of the coefficients of
common acoustic responses we examined the filter coeffi-
cients from 19074 HRIRs taken from the IRCAM Listen [7]
HRIR data set. This amounts to 9765888 coefficients allow-
ing for a good estimation of their overall distribution. Fig-
ure 1 shows a histogram of the coefficients from the HRIRs
and superimposed on the histogram is an α-stable pdf which
has been scaled to match the number of entries in the his-
togram. This approximate distribution was fitted using the
McCulloch’s method [8]. The approximate distribution is
parametrized via its characteristic function [9]

ψ(t) = E[e−γα|t|α(1−jβsign(t) tan (πα
2 ))+jδt] (1)

Here the four parameters α, β, γ and δ represent the char-
acteristic exponent describing the tail, the skewness, the scale
and the location respectively. The parameters used to generate
the distribution in Figure 1 were α = 1.2379, β = −0.2666,
γ = 0.0039, δ = −0.0013. It is clear that the coefficients of
HRIRs ,such as these, closely match a skewed α-stable distri-
bution. Room impulse responses measured by the authors in
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Fig. 1. Histogram of the coefficient values for 19074 IRCAM
HRIRs, closely resembling a skewed α-stable distribution.

both office sized rooms and a small hall along with the room
impulse responses from the AIR database [10], all had sim-
ilarly distributed coefficients. All distributions were heavy
tailed and leptokurtotic as is to be expected from exponen-
tially decaying signals. The α-stable distribution generalizes
the classical central limit theorem for sequences of random
variables which may not be i.i.d. Figure 1 shows a histogram
of the coefficients from 19074 HRIRs from the IRCAM Lis-
ten data set.

According to Hughes and Nikeghbali [3], for a polyno-
mial defined as

P (z) =
N∑

k=0

akz
k (2)

with randomly distributed coefficients ak, the roots of the
polynomial cluster uniformly about the unit circle if LN (P )
is small compared to the polynomial order N where

LN (P ) = log
N∑

k=0

|ak| −
1

2
log |a0| −

1

2
log |aN | (3)

provided a0 and aN are non zero.
Taking for example the (N = 512) IRCAM HRIRs, val-

ues of LN (P ) for the 19074 responses had a mean value of
7.2346, with maximum and minimum 11.8950 and 5.3000
respectively.

Hughes and Nikeghbali derived an expression placing a
lower bound on the number of roots vN of a polynomial P (z)
lying in an annulus bounded by 1− ρ and 1/(1− ρ) for 0 <
ρ < 1 as

vN ≥ N − 2
LN (P )

ρ
(4)

where

vN , #{zk : 1− ρ ≤ |zk| ≤
1

1− ρ
} (5)

Applying this to the IRCAM responses using the mean
value ofLN (P ), the number of roots falling within an annulus

around the unit circle parametrized by ρ = 0.2 would always
be greater than or equal to 442 for HRIRs of length N = 512
i.e. 86.5% of the roots.

On calculating the actual distribution of the roots of these
responses however, the roots were found to cluster far more
densely. The roots of 2325 randomly chosen IRCAM re-
sponses were calculated. The proportion of those within
an annulus parametrized by ρ = 0.2 was calculated to be
1176955 out of 1188075 roots or 99.06% of the roots.

The reason behind this difference can be found by exam-
ining equation 3. It was stated that when LN (P ) is small in
relation to the order, N , of P (z), then the roots of P (z) will
cluster uniformly about the unit circle. However, this depends
heavily on the magnitudes of the first and last coefficients of
P (z), a0 and aN . If either or both of these coefficients are
close to zero LN (P ) will grow much larger. However it can
be shown that despite the fact that acoustic impulse responses
often have low magnitude first and last coefficients, their roots
will cluster no less closely about the unit circle.

To see why this is we must look closely at the reasons why
acoustic impulse responses have low magnitude initial and fi-
nal coefficients. Acoustic responses in general have some on-
set delay which encodes the source-receiver delay and, also
in the case of HRIRs, the inter-aural time difference between
left and right HRIR pairs. These onset delays are generally
affected by measurement noise and transducer transfer func-
tions, meaning the delay is seen as a set of low magnitude ini-
tial coefficients as opposed to a pure delay. This accounts for
a low magnitude a0 pushing up the value of LN (P ). However
the behavior of the roots is not greatly affected as the delay
can be seen as a convolution with something approximating a
time delayed Kronecker delta. This short polynomial denoted
δ̃R(z) of order R << N will simply add an asymptotically
negligible number of roots to those of an acoustic response
despite increasing the value of LN (P ).

This effect can easily be demonstrated with a HRIR with
22 samples of approximate onset delay stripped off as in Fig-
ure 2. The lower signal in Figure 2 was then deconvolved
from the upper signal yielding a signal closely approximating
a delayed Kronecker delta. The roots of this signal can be
seen to form a ring outside the unit circle in Figure 3.

A similar argument can be made for the low magnitude of
the last coefficient of an acoustic response, aN . Most acous-
tical impulse responses exhibit a statistical decaying magni-
tude similar to an exponential decay. It was proposed by Stei-
glitz and Dickinson [11] that the decay in acoustic response
coefficients could be modeled as IIR filtering, adding only a
fixed (asymptotically negligible) number of zeros and poles to
the responses’s z-transform. This means one can still use the
white noise result on the distribution of roots. A windowed
impulse response giving an approximate FIR filter would add
just a fixed set of roots to the Argand plane. However such
a model of the exponential decay is not suitable for the pro-
posed application. The correlation that the IIR nature of such
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Fig. 2. This figure shows a HRIR (above) and that same HRIR
with approximate onset delay removed (below)
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Fig. 3. Roots of the approximate delay polynomial

a filter would induce on the coefficients of the response would
mean that their probability distribution would be drastically
changed with a removal of independence This goes against
the fact that the arrivals in a RIR should be independent of
one another. This behavior renders Steiglitz and Dickinson’s
model unsuitable. Furthermore, such IIR based models do
not have frequency responses which behave in a similar way
to those of acoustic impulse responses. The authors instead
propose to model the decay of acoustic signals like HRIRs
and RIRs such that the expected value of the coefficients de-
cay exponentially, i.e. each sample in a response h[n] can be
modeled as

E [h[n]] = e−βnp[n] (6)

and thus,

E [H(z)] = P (e−βz) (7)

where β << 1 and as before p[n] is a random signal vector
of length N . This means that the expected value of the poly-
nomial coefficients in the ensemble also has an exponential
decay. Such a model is reminiscent of Polack’s statistical re-
verberation model [12]. This has the effect of reducing the
expected value of the magnitude of the polynomials roots by
a uniform factor, e−β , without altering their angular location.
Thus the roots remain just as closely clustered, but about a
ring just within the unit circle and not about the unit circle
itself. The predominantly minimum phase nature of HRIR

roots closely matches this model. The exponential decay thus
results in a low magnitude final coefficient aN , increasing the
value of LN (P ) without disrupting the clustering behavior of
the polynomial roots.

Concerning the angular distribution of the roots in this an-
nulus about the unit circle; Let

vθϕ , #{zk : θ ≤ arg(zk) < ϕ} (8)

be the number of roots of polynomial P (z) whose argument
lies between θ and ϕ where 0 ≤ θ < ϕ ≤ 2π. According to
Hughes and Nikeghbali, the quadratic inequality

v2θϕ−
N(ϕ− θ)

π
vθϕ+

N2(ϕ2 − 2ϕθ + θ2)

4π2
−NCLN (P ) ≤ 0

(9)
holds where C is some constant. Placing a lower bound on
the number of roots per angular subdivision

In fact for the 2325 IRCAM HRIRs studied, the average
number of roots lying in each 1◦ segment was 1.4179. This
fits very well with the ideal Erdős and Turan result which
states that

lim
N→∞

E
[
1

N
vθϕ

]
=
ϕ− θ

2π
(10)

as

N
ϕ− θ

2π
= 1.4222 (11)

for N = 512.

3. RELATING REVERBERATION TIME TO ROOT
CLUSTER RADIUS

Consider the following model of a room impulse response.
Let p[n] be a random signal vector of length N who’s entries
correspond to the coefficients of a random polynomial. We
can multiply this signal with a decaying exponential window
w[n] = e−βn also of length N . The room impulse response
can thus be modeled as

h[n] = p[n]⊗ w[n] (12)

where ⊗ is the Hadamard product for vectors.
The reverberation time RT60 is the 60dB decay time for

a RIR [13]. In the case of our model signal this can be eas-
ily derived from the envelope w[n] and can be obtained by
solving

20 log10 (e
−βRT60) = −60 (dB)

to get

RT60 =
1

β
ln (103).

(13)

We know from Hughes and Nikeghbali [3], that the roots
of p[n] cluster uniformly about the unit circle. Also by the
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properties of the z-transform H(z) = P (e−βz) and so the
magnitudes of the roots of P (z) are scaled by a factor of e−β

or e
ln (103)

RT60 to become the roots of H(z).
By way of Sabine’s formula [14] we can also roughly re-

late the radius of the ring of clustered roots from a room
impulse response to the room’s physical characteristics.
Sabine’s equation states

RT60 =
4V

cSā
ln (106) (14)

where V is the room’s volume in m3, S is the room’s to-
tal surface area in m2, c is the speed of sound in air, c ≈
340.29 ms−1 and ā is the average absorption coefficient of
the room’s surfaces. Recalling that RT60 = 1

β ln (103), this
allows us to relate these physical properties to β

β =
cSā

8V
. (15)

4. EXAMINATION OF RT60 ESTIMATED FROM
REAL AND MODELED RIRS

A set of Model RIRs were generated by means of a eight thou-
sandth order, random, normally distributed coefficient vector,
whose coefficients had been scaled by a known decaying ex-
ponential. In this implementation the user can specify a value
for the simulated room’s RT60. Therefore it was possible to
test whether one could correctly estimate the RT60 of a room
from the radius at which the RIR’s roots clustered. The results
from this simulation are shown in Figure 4. Here the error in
estimating RT60 from both the root location based method de-
scribed in Section 3 and a method based upon ISO 3382 [15]
are shown. The radius of the root annulus is taken to be the
median value of the magnitudes of the roots of the response.
A median value is chosen so as to disregard outlying roots.
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Fig. 4. Error in reverberation time from the root location
based method described in Section 3 and a method based upon
ISO 3382 [15] for a set of 8000th order generated responses

This benchmark test was performed in order to ascertain
the expected error in the RT60 estimations under fully con-

trolled conditions. Based upon the success of this as a bench-
mark it was then possible to compare the estimation of RT60

using both methods when applied to real RIRs from the AIR
database [10]. This comparison is made in Table 1. A com-
parison is also made to the RT60 values provided by Jeub,
Schäfer and Vary along with the the AIR database. They used
the Schroeder method [16] to estimate the these values. As
can be seen the RT60 values obtained via the root cluster based
method are more consistent within each room.

Room Schroeder Root Method ISO 3382
0.0800 0.1423 0.0964

Studio 0.1100 0.1400 0.0955
0.1800 0.1409 0.0976
(2.6e-3) (1.3e-6) (1.1e-6)
0.3700 0.3530 0.5479

Office 0.4400 0.3768 0.5366
0.4800 0.3851 0.2610
(3.1e-3) (2.7e-4) (2.6e-2)
0.2100 0.3141 0.3359
0.2200 0.3213 0.3565

Meeting 0.2100 0.3136 0.3686
0.2400 0.3189 0.3754
0.2500 0.3288 0.3526
(3.3e-4) (3.8e-5) (2.3e-5)
0.7000 0.7560 0.8569
0.7200 0.7995 0.8647

Lecture 0.7900 0.8076 0.8910
0.8000 0.7990 0.9007
0.8100 0.8169 0.8902
0.8300 0.8087 0.8405
(2.7e-3) (4.6e-4) (5.5e-4)

Table 1. RT60 values for the first four rooms in the AIR
database calculated via root locations, ISO 3382 and the
Schroeder method. The values shown in brackets are the vari-
ances between RT60 values estimated in each room using each
of the three methods.

5. CONCLUSION

In this paper it has been demonstrated that behavior of the
root distribution of acoustic impulse responses is consistent
with those of random polynomials. This has been shown to
be the case despite issues such as exponential decay. It has
also been shown that based upon the effects of scaling ran-
dom polynomials with decaying exponential windows, it is
possible to accurately deduce the RT60 of a room from the
median of the root locations of a measured impulse response.
The RT60 estimations from root locations were shown to be
consistent with those made by standard methods and to be al-
most constant across different RIR measurements from within
a room.
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