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ABSTRACT

This article compares methods for the conversion of time-
series into a spectro-temporal representation. These methods
are designed based on a resemblance with the auditory pro-
cessing of sound in the inner ear, or on mathematical prin-
ciples related to, for example, Fourier analysis. This study
provides a comparison between several of these methods.

Two tests were devised for this comparison: one based on
susceptibility to noise and one on the expression of spectro-
temporal detail. While some methods produced good results
on one of the two tests, others produced good results on both.

Overall the transmission line model using an impedance
function suggested by Zweig [1] provided the best results,
though not significantly. Also a larger computational load
may hinder application in some domains. The gammatone
filterbank and straightforward spectrogram provide good al-
ternatives with less computational load.

Index Terms— Spectral analysis, Spectrogram, Acoustic
signal processing, Signal mapping, Acoustic signal detection

1. INTRODUCTION

Time-frequency processing is the basis of most sound recog-
nition systems and research. Due to its light computational
load the short-term Fourier transform is used frequently for
this propose. In computational auditory scene analysis, based
on the motivation to be more perceptually correct, models the
human cochlea are frequently used. In this paper we compare
several mathematically motivated methods to several cochlea-
model based time-frequency representations. For an overview
of the methods compared see table 1.

A comparison could be made on many properties, but
in this work we present two properties that are relevant for
recognition systems: their spectro-temporal resolution and
their susceptibility to noise. The smaller the influence of
background noise on the representation of a target signal,
the more likely the signal can be properly detected and rec-
ognized in noisy real-life conditions. And the more signal-
related spectro-temporal detail a representation contains, the
more information can be extracted from it, which, in turn,
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should also increase the chances of the signal being properly
detected and recognized. Since no use was made of specific
properties of speech signals, e.g. the harmonic or temporal
structure of speech, the value of this study for improvement
of speech or speaker recognition systems will be limited. As
stated before, the focus of this study is on use of conversion
methods for more general CASA systems.

1.1. Relation to state of the art

The usual approach of comparing recognition results (e.g.
[2, 3] on some standard database implies implementing a
recognition system on top of the spectro-temporal conversion
method. This introduces the possibility that performance is
influenced by the interaction between the conversion and the
recognition system. One recognition system may be better at
using aspects of a certain representation than another. Also,
the analysis may be biased toward speech, music or other
specific types of sound. To avoid influencing of biasing the
results, the performance measures used in this paper are based
purely on the output of the conversion method.

To test noise robustness we follow a well-known test for
investigating susceptibility of spectro-temporal representa-
tions of sound to the effects of noise: the AURORA II test
[3]. Although developed for speech recognition and using
speech signals as the target exclusively, this test is sufficiently
rich in both targets and background sounds to yield indica-
tive results for other sound classes. This test database is
thoroughly documented, well calibrated and widely used.

The time-frequency resolution of the transmission line
model used in this study was analyzed by Hut et al [4] and
compared to that of a gammatone filterbank similar to the
one used in this study. The approach taken in that paper
was based on the impulse response and its Fourier transform,
from which σt and σω were computed as defined by Gabor
[5]. The outcome σtσω can be interpreted as an area in the
spectro-temporal domain occupied by a simple signal such as
a pulse, a tone or tone burst. This area can theoretically never
be smaller than 1/2 and Gabor functions, used in wavelet
analysis, produce the minimal area of 1/2. Computing σt
and σω and comparing the product of these two values with
the minimum value of 1/2 thus provides a straightforward
way of comparing different methods on the resolution of
spectro-temporal detail.
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Table 1. Overview and subdivision of the techniques used
Name Abbreviation # bins References

and/or imple-
mentation

Formulae

Short Term FFT SFFT 512 Octave X(τ, ω) =
∫∞
−∞ x(t)w(t− τ)e−iωtdt

Mel-Frequency
Scaled SFFT MF-SFFT 100 [6]

Wavelet WT 128 [7] own G(t, τ, fc) =
1√

2π 1
fc

sin(2πfc(t− τ))e
−(t−τ)2

2 1
fc

2

Gammatone
filterbank GT 93 [8] [9] g(t, ω) = atγ−1 exp−btcosωt

Linear
transmission-line
model

LTL 600 [10] own

LTL With Zweig
impedance LTLZ 600 [11] own

2. METHODS

2.1. Implementation of conversion methods

Most models were implemented in Octave, only the transmission-
line model used a C-implementation based on the original
Fortran code by Duifhuis et al [10] and reimplemented by our
institute. The number of filters or sections and other settings
in each of the methods were the defaults with the implemen-
tations provided or based on references. The outcome of
the transformation was converted to an energy by the Hilbert
transform (WL, GT, LTL, LTLZ) or the absolute value (SFFT,
MF-SFFT). All energies were converted to dB.

2.2. Tests of performance

2.2.1. Noise robustness

The noise robustness test is based on the AURORA II test.
Here TI-Digits strings are mixed with various types of noise at
signal-to-noise ratios from -5 dB to 20 dB. Recordings from a
large number of different speakers are available, together with
recordings of six different noise types. To keep computational
effort within reasonable limits, we decided to use recordings
of two male and two female speakers for all digits and mix
these with all six noise types. We extended the SNR range
used in AURORA II to -30 to +30 in 5 dB steps.

Spectro-temporal representations of energy were com-
puted for the target signal (without noise) Et(t, f), for the
noise signal (without target) En(t, f) and for the mixture
target+noise Em(t, f). Some regions of the spectro-temporal
domain are dominated by the target signal, whereas other
regions are dominated by the noise. The regions dominated
by either the target or the noise are found using the following
masks:

MT(t, f) =

(|Em(t, f)− Et(t, f)| ≤ |Em(t, f)− En(t, f)|)
&(Em(t, f)− Et(t, f) ≤ 3)

(1)

MN(t, f) =

(|Em(t, f)− En(t, f)| < |Em(t, f)− Et(t, f)|)
&(Em(t, f)− En(t, f) ≤ 3)

(2)

We then computed the fraction of the total energy of the
target signal that could be traced in the mixed energy: Ett ,
and similarly Etn for the noise signal. (N.B. these two frac-
tions need not add up to 1. If the noise and target do not
overlap in the time-frequency domain, both values approach
one). Figure 1 provides examples of the masks MT(t, f) and
MN(t, f) for the gammatone filterbank.
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Fig. 1. Masks as specified in equations 1(top) and 2(bottom),
respectively the regions dominated by target and noise for
MAE 1A target with car noise mixed at 0 dB SNR. The gam-
matone was used as representation. Black represents ones in
the mask while white represents zeros.

Figure 2 shows the values of the fractions Ett and Etn,
computed with the gammatone filterbank for different values
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of the SNR for target signal MAE 1A and noise signal car.
The value of Ett is 1 for high SNR values, as one would ex-
pect. At these values the signal energy should be completely
traceable in the representation of the mixed signal. At the
lowest SNR values the signal can no longer be traced and is
completely submerged in the noise, so Ett drops to 0. For
Etn the situation is almost reversed, approaching 1 at the low-
est SNR values. This quantity, however, does not fall to 0 at
the other end of the scale. Since the target is concentrated
in time and frequency, whereas the noise is more distributed
over the time-frequency plane, there will always be parts of
the spectro-temporal domain in which the noise will domi-
nate, even at the highest SNR values. This implies that Etn
does not fall to 0.
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Fig. 2. Fractions Ett and Etn, computed with the gammatone
filterbank for different values of the SNR for target signal
MAE 1A and noise signal car

To allow a direct comparison between different methods
on susceptibility to noise, the curve shown in figure 2 can be
reduced to a single number by taking the SNR value whereEtt
reaches to 2/3. We will refer to this value as SNRthresh as it is
indicative of the threshold above which the amount of trace-
able energy should be sufficient to allow recognition. The
different spectro-temporal distributions of energy of the dif-
ferent noise types lead to sizable differences in the SNRthresh
values of these “broadband” noises. We therefore decided not
to average the results over the noise type.

2.2.2. Spectro-temporal detail

We adapted Hut’s approach and computed estimates for σt
and σω from the spectro-temporal energy representations of
impulse and tones respectively.

For the computation of σt we used the spectro-temporal
energy representation resulting from stimulation by a single
pulse Ep(t, f), and

σ2
t (f) =

1

E(f)2

∫
(t− t0(f))2 102Ep(t,f)/10dt (3)

t0(f) =
1

E(f)2

∫
t 102Ep(t,f)/10dt (4)

E(f)2 =

∫
102Ep(t,f)/10dt (5)

computed for each frequency channel in Ep(t, f). Note
that f is stimulus frequency and as the integration is over−∞
to ∞ the factor 2π makes no difference. The power of ten
terms convert the decibels back to the linear domain. For the
computation of σω we used the spectro-temporal energy rep-
resentation Eω(t, f) resulting from stimulation by sinusoids
at frequencies corresponding to the center frequencies of all
frequency channels. Thus the number of stimulations is equal
the number of bins as specified in table 1. This replaces the
Fourier transform of the impulse response in the paper by Hut
et. al. ([4]). In this case

σ2
ω(f) =

1

E(ω)2

∫
(ω − ω0(f))

2102Eω(t,f)/10dω (6)

ω0(f) =
1

E(ω)2

∫
ω102Eω(t,f)/10dω (7)

E(ω)2 =

∫
102Eω(t,f)/10dω (8)

If we use the gammatone filterbank and the wavelet anal-
ysis to compute the energy representations, the product σtσω ,
shown in figures 6 and 5 resp., approaches the theoretical min-
imum of 0.5 for the center part of the frequency range as ex-
pected. At the edges of the frequency range of the models we
see deviations caused by the finiteness of the integration do-
main. For frequencies near these edges E(ω) can be regarded
as truncated to the integration domain producing deviations in
the value of σω . The wavelet analysis can be seen to approach
the theoretical minimum more closely than the gammatone
filterbank, as expected.

3. RESULTS

3.1. Noise robustness

Figures 3 and 4 show the SNR thresholds as defined in sec-
tion 2.2.1 for all methods tested. It can be observed that the
spectrogram, gammatone filterbank and the linear transmis-
sion line with Zweig impedance function produce comparable
results, all with thresholds around -5 dB. The linear transmis-
sion line produces values around -2 dB. The wavelet scores
worst with a values around +2 dB. Noise types car, restau-
rant and train generally have a higher masking effect, leading
to higher SNR thresholds, whereas street noise for all meth-
ods results in the lowest thresholds.

3.2. Spectro-temporal detail

Figures 5 and 6 show the curves for the product σtσω for all
different methods. Most curves show the effects of the finite-
ness of the frequency range as described in section 2.2.2, es-
pecially at the high frequency end. Focusing attention on the
midfrequency region therefore, where the results are most re-
liable, most of the methods are grouped around the theoretical
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Fig. 3. SNR Thresholds for the mathematically-inspired
methods
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Fig. 4. SNR Thresholds for the biologically-inspired methods

minimum value of 0.5, with the mel-frequency-scaled spec-
trogram performing slightly worse with values around 1. The
obvious exception is the original transmission line model with
significantly higher σtσω values. The linear version with the
Zweig impedance performs better and falls in the range of the
other methods.The “humps” in the curve of the linear trans-
mission line with Zweig impedance seen around 2 kHz are
caused by an “after ringing” of the impulse response.
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Fig. 5. Curves of σtσω for the mathematically-inspired meth-
ods

4. DISCUSSION

Both the comparison of susceptibility to noise and the com-
parison of spectro-temporal detail show significant differ-
ences between different methods for conversion of waveforms
to a spectro-temporal representation of energy.
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Fig. 6. Curves of σtσω for the biologically-inspired methods

Similarly, a good performance of the wavelet analysis on
the spectro-temporal detail is countered by the worst perfor-
mance on susceptibility to noise. The gammatone filterbank
and spectrogram and the linear transmission line model using
the Zweig impedance perform reasonably well on both tests.
As could be expected the Mel-frequency scaling of the spec-
trogram reduces the spectro-temporal detail.

The fact that some methods perform worse than others on
the tests presented here does not imply that their use should
be avoided. The tests used here are meant to compare differ-
ent methods for human-centered sound analysis. The aspects
of the spectro-temporal representation which are important in
a human-centered system depend on the task. However, for a
system functioning in a real world environment without prior
knowledge about target or noise signals, noise robustness and
spectro-temporal detail will most likely be essential. The re-
sults on the tests shown here indicate which methods perform
better than others on these two aspects. They can not be di-
rectly related to human performance on e.g. speech recogni-
tion. Although the database used for the test on noise sus-
ceptibility uses speech samples and is derived from the AU-
RORA II test for noise-robust speech recognition systems, a
direct comparison with speech recognition scores should be
avoided. Recent studies show that the traceability of energy
regions in the spectro-temporal representation may well link
to features relevant for recognition ([12] and [13]), although
they also indicate the relative importance of such regions to
recognition may be more complex. Lewicki et. al. ([14])
represent yet another reason for looking at biological sys-
tems. They compared filters as derived from experimental
data (known as revcor filter) to mathematical filters (wavelet
and Fourier) and showed up to a three-fold increase of cod-
ing efficiency of speech signals by revcor filters over Fourier
or wavelet based systems for noisy signals. The subject of
coding efficiency is however beyond the scope of this paper.
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