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ABSTRACT

A randomly positioned microphone array is considered in this work.
In many applications, the locations of the array elements are known
up to a certain degree of random mismatch. We derive a novel sta-
tistical model for performance analysis of the multi-channel Wiener
filter (MWF) beamformer under random mismatch in sensors loca-
tion. We consider the scenario of one desired source and one inter-
fering source arriving from the far-field and impinging on a linear
array. A theoretical model for predicting the MWF mean squared er-
ror (MSE) for a given variation in sensors location is developed and
verified by simulations. It is postulated that the probability density
function (p.d.f) of the MSE of the MWF obeys Γ distribution. This
claim is verified empirically by simulations.

Index Terms— Beamforming, Random Microphone arrays,
Multi-Channel Wiener Filter.

1. INTRODUCTION

Beamformers can nowadays be found in a wide range of applica-
tions [1], and in particular in speech processing tasks, e.g. localiza-
tion, tracking and speech enhancement [2]. In recent years, with
advances in sensors and digital processors technology, the concept
of wireless acoustic sensor network (WASN) with a large number of
arbitrarily deployed sensors becomes feasible.

It is well known that data-dependent beamformers outperform
their data-independent counterparts in terms of the directivity fac-
tor, i.e., spatial resolution [3]. However, data-dependent beamform-
ers are known to be sensitive to deviations from the assumed spatial
characteristics of the setup, such as microphones positions, acoustic
medium and desired source position [4], [5]. In many applications,
the spatial characteristics are not exactly known and can even change
over time. Driven by the applicability of large scale microphone
networks, the incorporation of statistical models for describing the
spatial characteristics of the setup is gaining interest in the signal
processing community. The use of statistical models in array pro-
cessing was first proposed by Lo [6]. In this seminal contribution
the mean beampattern of data-independent arrays was analyzed. Re-
cently, a theoretical analysis of the performance of data-dependent
beamformers with random layouts has been proposed by Markovich-
Golan et al. [7]. Doclo and Moonen [8] proposed design procedures
for improving the mean and worst-case performance of superdirec-
tive beamformers in mismatch conditions.

In the current contribution the performance of the MWF beam-
former for a linear microphone array with random mismatch in
microphones positions is derived. A MWF beamformer is consid-
ered due to its applicability to speech processing applications and

its relevance to statistical analysis which is carried out in the se-
quel. We consider a simplified scenario of a coherent wide-band
desired source and a coherent wide-band interfering source arriv-
ing from the far-field and impinging on the microphone array, in
a non-reverberant environment [9], and corrupted by a spatially-
white noise (microphones self-noise). This scenario may be relevant
in outdoor speech processing applications such as border security
control and wildlife habitat monitoring [10]. For a more common,
indoor applications, as conference system, a reverberant model
should be considered, which is out of the scope of the current paper
and will be considered in a future work.

The rest of the paper is organized as follows. In Sec. 2, the prob-
lem is formulated. In Sec. 3, an expression for MSE of the MWF,
given the actual microphones locations, is derived. Then, in Sec. 4
the statistics of the MMSE is analyzed. The derived theoretical mod-
els are empirically verified in Sec. 5. Finally, a discussion is given
in Sec. 6.

2. PROBLEM FORMULATION

Consider a coherent wideband desired source and a coherent wide-
band interfering source impinging on a M microphone array. The
microphone signals are further corrupted by a spatially white noise.
In the short-time Fourier transform (STFT) domain, the desired
source is denoted sd(l, k), the interfering source is denoted si(l, k)
and the sensor noise at the pth microphone is denoted np(l, k),
where l is the frame index, and k is the frequency index. The anal-
ysis window length is denoted NDFT. In the following, the term
nominal will correspond to values used for designing the beam-
former, while the term actual will correspond to true values of the
received signals:

zn(l, k) = adnsd(l, k) + ainsi(l, k) + n(l, k) (1a)

za(l, k) = adasd(l, k) + aiasi(l, k) + n(l, k) (1b)

where n(l, k) is a spatially-white sensor noise; adn and ain are the
nominal desired source and the interfering source steering vectors,
respectively; and ada and aia are the actual manifolds of the desired
source and the interfering source, respectively. The kth wavelength
corresponding to the kth frequency index is λk = 2c

fs

NDFT
k

, where fs

is the sampling frequency and c is the sound velocity in the medium.
The MWF is designed to enhance the desired source component
in (1a). However, due to mismodeling, the actual measurements
obey (1b). Our goal in this contribution is to analyze the statisti-
cal properties of the performance of the MWF in this scenario. The
analysis can be carried out for each frequency bin k independently,
omitted hereafter for brevity. Denote the total nominal interference
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component vn(l) = ainsi(l) + n(l). The output of the beamformer
w is given by y(l) = wHza(l). MWF is the beamformer that mini-
mizes J = E

{
|sd(l)− y(l)|2

}
, ∀l and is given by [3]:

wmwf = Φ−1
znznφznsd

(2)

where:

Φznzn = E
{
znz

H
n

}
= σ2

da
d
n(adn)H + Φvnvn (3a)

φznsd
= E {zns∗d} = σ2

da
d
n (3b)

Φvnvn = E
{
vn(vn)H

}
= σ2

i a
i
n(ain)H + σ2

i IM×M. (3c)

σ2
d, σ

2
i , σ

2
n are the spectra of the desired source, the interfering

source and the microphones self-noise, respectively, and I is the
M ×M identity matrix.

3. MSE ANALYSIS FOR GIVEN ACTUAL MANIFOLDS

In the following section we will analyze the MSE of the MWF cal-
culated using (2), for a given actual manifolds ada, and aia, usually
different from the nominal manifolds adn,ain.

Applying the Woodbury identity to (3a) and substituting the re-
sult together with (3b) in (2) yields an explicit expression for the
nominal wmwf:

wn
mwf =

1

1/σ2
d + α

Φ−1
vnvna

d
n (4)

where:

Φ−1
vnvn =

1

σ2
n

· [IM×M − γ · ain(ain)H ] (5a)

α
4
= (adn)HΦ−1

vnvna
d
n ∈ R (5b)

γ
4
=

σ2
i

σ2
n +M · σ2

i

. (5c)

The explicit form of Φ−1
vnvn in (5a) is obtained by applying the

Woodbury identity to (3c). Once the wmwf is set (4), its performance
in the nominal scenario (i.e. zn(l) = za(l) ) are well-known in the
literature [3], and are given by:

Jopt(w
n
mwf) = σ2

d − (wn
mwf)

H · Φznzn ·w
n
mwf

=

[
1

σ2
d

+
1

σ2
n

(
M − γ ·

∣∣∣∣(adn)H ain

∣∣∣∣2
)]−1

. (6)

We are interested in analyzing wn
mwf performance in miss-modeling

conditions, i.e. when the nominal beamformer is applied to the ac-
tual signals:

Ja(wn
mwf) = E

{
|sd − (wn

mwf)
Hza|2|ada,aia

}
. (7)

Substituting (4) and (1b) in (7), usingE {sd(l)va} = 0 and straight-
forward Algebra, the wn

mwf MSE in a miss-modeling conditions (i.e.
zn(l) 6= za(l) ) can be explicitly written as:

Ja(wn
mwf) = σ2

d −
2σ2

d

1/σ2
d + α

<(ρd) +
σ2
d

(1/σ2
d + α)2

|ρd|2 +

+
σ2
i

(1/σ2
d + α)2

|ρid|2 +
σ2
n

(1/σ2
d + α)2

β (8)

where:

ρd
4
= (ada)HΦ−1

vnvna
d
n ∈ C (9a)

ρid
4
= (aia)HΦ−1

vnvna
d
n ∈ C (9b)

β
4
= (adn)HΦ−1

vnvn Φ−1
vnvna

d
n︸ ︷︷ ︸

b

= bHb ∈ R (9c)

4. THE STATISTICS OF THE Ja(wn
mwf)

We will derive now an approximated statistical model for the resid-
ual error Ja(wn

mwf). We will show that the resulting expression de-
pends on the mismatch between the nominal manifolds and the ac-
tual manifolds. Note that (8) depends on the mismatch only through
ρd and ρid. All other variables depend on the nominal values.

Denote θd and θi the desired source and the interfering source
directions of arrival, respectively. Assume that the mismatch be-
tween the nominal and the actual manifolds results from an uncer-
tainty in microphones locations. The nominal location of the pth
microphone ηp is given by (10a), where ∆x and ∆y are the dis-
tances between neighboring sensors on x and y axes, respectively.
We assume, without loss of generality, that the microphones’ inter-
distances are equal. The actual location of the pth microphone rp is
given by (10b) with µp being the uncertainty in microphones loca-
tion obeying the Gaussian distribution defined in (10c).

ηp
4
= [ηxp , η

y
p ]T = [p ·∆x, p ·∆y]T (10a)

rp
4
= [ηxp + µxp , η

y
p + µyp]T = ηp + µp (10b)

µp ∼ N (0, σ2I2×2). (10c)

Using the above definitions, the nominal and the actual manifolds
can be explicitly written as:

adn =
[
e−jη

T
1 ζd/λk , e−jη

T
2 ζd/λk , · · · , e−jη

T
Mζd/λk

]T
(11a)

ada =
[
e−jr

T
1 ζd/λk , e−jr

T
2 ζd/λk , · · · , e−jr

T
Mζd/λk

]T
(11b)

ain =
[
e−jη

T
1 ζi/λk , e−jη

T
2 ζi/λk , · · · e−jη

T
Mζi/λk

]T
(11c)

aia =
[
e−jr

T
1 ζi/λk , e−jr

T
2 ζi/λk , · · · , e−jr

T
Mζi/λk

]T
(11d)

where

ζd ≡ 2π [cos θd, sin θd]
T , ζi ≡ 2π [cos θi, sin θi]

T . (12)

Explicit dependance of ρd and ρid on the uncertainty parameter µp
can be derived now. This dependance is revealed by substituting (5a)
and (11a)-(11d) in (9a) and (9b). The rather lengthy but straightfor-
ward procedure, omitted here for the sake of brevity, results in the
following expressions:

ρd =
1

σ2
n

(
M∑
l=1

ejε
d
l − γ

M∑
l=1

ejε
d
l

M∑
p=1

eju(p−l)

)
(13)

ρid =
1

σ2
n

(
M∑
l=1

ej(ul+ε
i
l) − γ

M∑
l=1

ejε
i
l

M∑
p=1

ejup
)

(14)
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where:

u
4
=

∆x(cos θi−cos θd)+∆y(sin θi−sin θd)

λk/2π

εdl
4
= µTl ζd/λk ∼ N

(
0, σ2

ε = 4π2σ2

λ2
k

)
εil
4
= µTl ζi/λk ∼ N

(
0, σ2

ε = 4π2σ2

λ2
k

)
.

Similarly, explicit expression for α and β can be obtained by substi-
tuting (5a) and (11a)-(11d) in (5b) and (9c), respectively. Again, a
straightforward procedure results in the following expressions:

α =
1

σ2
n

(
M − 1

γ

M∑
l=1

e−jul
M∑
p=1

ejup
)

(15)

β =
1

σ2
n

(
adn − γain

M∑
p=1

ejup
)H (

adn − γain
M∑
p=1

ejup
)
. (16)

We will apply now several approximations and simplifications
in order to assess the statistics of ρd and ρid. The following assump-
tions, as described in (A.1)-(A.3), are necessary for simplifying the
analysis.
σ2
n

σ2
i

�M (A.1)
2π

u
�M (A.2) εil � u (A.3)

Practically, (A.1) dictates sufficient interfernce to noise ratio (INR).
Under this condition γ, as defined in (5c), can be approximated
by 1

M
. Assumption (A.2) requires that angular distance (in wave-

lengths), as reflected by the array, between the desired and interfer-
ing sources is large with respect to the amount of available sensors.
When Assumption (A.2) is valid, the summations in (13)-(16) which
do not include random elements are vanishing. Assumption (A.3) is
limiting the analysis to small errors, i.e. the uncertainty in the mi-
crophones locations is much smaller than the angular distance, as re-
flected by the array, between the desired and the interfering sources.

Hereinafter, an analysis under Assumptions (A.1)-(A.3) is car-
ried out. We are able to significantly simplify the expressions for
ρd, ρid, α and β which will allow us to analyze the statistical behav-
ior of (8). This will be demonstrated in the sequel.

γ

M∑
p=1

eju(p−l) (A.1)
≈ e−jul

M

M∑
p=1

(cosup+ j sinup)
(A.2)
≈ 0 (17a)

M∑
l=1

ej(ul+ε
i
l)

(A.3)
≈

M∑
l=1

(cosul + j sinul)
(A.2)
≈ 0. (17b)

Denote J̃a(wn
mwf), an approximation of Ja(wn

mwf) under (A.1)-
(A.3), our goal is to derive the probability density function of J̃a.
The expression for J̃a is obtained by applying (17a) and (17b)
to (13)-(16) and substituting the simplified terms in (8):

J̃a(wn
mwf)

4
= σ2

d −
2σ4

d

σ2
n +Mσ2

d

·X +
σ6
d

(σ2
n +Mσ2

d)2 ·X
2+

+
σ6
d

(σ2
n +Mσ2

d)2 · Y
2 +

Mσ4
dσ

2
n

(σ2
n +Mσ2

d)2 (18)

where X
4
=
∑M
l=1 cos εdl and Y

4
=
∑M
l=1 sin εdl are random vari-

ables (RV). Now, since
{
εdl
}M
l=1

are independent identically dis-
tributed RVs, according to the Central Limit TheoremX and Y con-
verge to a Gaussian RV for M � 1, with expected values µX , µY

and variances σ2
X , σ2

Y , respectively. We will calculate these mo-
ments now. Due to space constraints only the derivation of the mo-
ments of X are presented. The respective quantities of Y can be
calculated in a similar way.

µX = E

{
M∑
l=1

cos εdl

}
=

M∑
l=1

<
(
E
{
ejε

d
l

})
=

M∑
l=1

< (ϕε(1)) =

= M · e−0.5σ2
ε

σ2
X = E


(

M∑
l=1

cos εdl

)2
−M2e−σ

2
ε = −M2e−σ

2
ε+ (19)

+ E


M∑
l=1

(
<
(
ejε

d
l

))2

+ 2

M−1∑
l=1

M∑
p=l+1

<
(
ejε

d
l

)
<
(
ejε

d
p

) =

=
M

2
+
M

2
E
{

cos 2εdl

}
+ 2M

M − 1

2
eσ

2
ε −M2e−σ

2
ε =

=
M

2
+
M

2
< (ϕε(2))−Me−σ

2
ε =

M

2

(
1 + e−2σ2

ε

)
−Me−σ

2
ε

where ϕε is the characteristic function of εdl . Similarly,

µY = 0, σ2
Y = 0.5M − 0.5Me−2σ2

ε (20)

Define two standardized RVs,
∼
X
4
= 1

σX

(∑M
l=1 cos εdl

)
− µX

σX

and
∼
Y
4
= 1

σY

∑M
l=1 sin εdl . J̃a can be represented as a function of

∼
X,
∼
Y as in (21). The random behavior of J̃a is dictated by

∼
X

2

and
∼
Y

2

which are χ2 RV with one degree of freedom and by
∼
X which is

a Normal RV.

J̃a(wn
mwf) = c1·

∼
X

2

+c2·
∼
Y

2

+c3·
∼
X +c4 (21)

where

c1
4
=

σ6
dσ

2
X

(σ2
n+Mσ2

d)
2 , c2

4
=

σ6
dσ

2
y

(σ2
n+Mσ2

d)
2

c3
4
=

2σ6
dσXµX

(σ2
n+Mσ2

d)
2 −

2σ4
dσX

σ2
n+Mσ2

d

c4
4
= σ2

d +
σ6
dµ

2
X

(σ2
n+Mσ2

d)
2 −

2σ4
dµX

σ2
n+Mσ2

d
+

Mσ4
dσ

2
n

(σ2
n+Mσ2

d)
2

The expected value and the variance of the J̃a can be calculated an-
alytically:

E
{
c1
∼
X

2

+c2
∼
Y

2

+c3
∼
X +c4

}
= c1 + c2 + c4 (22)

Var
{
c1
∼
X

2

+c2
∼
Y

2

+c3
∼
X +c4

}
= 2c21 + c23 + 2c22. (23)

Deriving an analytical expression for the p.d.f of J̃a is a cumber-

some task, mainly due to the inherent dependency between
∼
X

2

and
∼
X . In Sec. 5 we postulate that J̃a can be almost accurately described
by a Γ RV (for a given mismatch variance σ2) fJa (ja, κ, θ) =
1
θκ

1
Γ(κ)

jκ−1
a e−ja/θ where κ is the shape parameter and θ is the scale

parameter. This postulation is validated empirically by simulations.
Assuming for now that J̃a is indeed Γ distributed, the expected value
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and a variance are given by θκ and θ2κ, respectively. Comparing
these values with (22) and (23), θ and κ can be deduced:

κ =
(c1 + c2 + c4)2

2c21 + c23 + 2c22
, θ =

2c21 + c23 + 2c22
c1 + c2 + c4

. (24)

We will use the obtained p.d.f to derive a reliability function R(σ2),
defined as the probability of the excess MSE due to mismatch condi-
tions not to exceed a pre-defined threshold. Define the excess MSE

as the ratio MSEEX
4
= J̃a(wn

mwf)/Jopt(w
n
mwf). Based on J̃a(wn

mwf)
description as a Γ RV, and noticing that the nominal MSE is inde-
pendent of the mismatch parameter σ2, R(σ2) is the cummulative
density function (CDF) of a Γ RV with shape parameter equal to κJ ,
and scale parameter equal to 1

Jopt(w
n
mwf)

θJ :

R(σ2) = Pr (MSEEX < T ) =
1

Γ(κJ)

∫ T ·Jopt(wnmwf)
θJ

0

tκJ−1e−tdt.

(25)

5. MODEL VERIFICATION

We turn now to the verification of the derived models. For that
purpose a simulative benchmark has been designed. Arrays with
M = 10 sensors, ∆x = λ/2 and ∆y = 0 are used. Desired
and interfering sources are arriving from the far-field, with an-
gles of arrival equal to θd = 900 and θi = 1200, respectively
and frequency 1500 Hz. A sensor noise is added to the received
signals, with signal to noise ratio (SNR) 40 dB, and signal to in-
terfernce ratio (SIR) 0 dB. The MWF beamformer (2), wn

mwf, is
designed with nominal conditions (1a) and applied to actual sig-
nals (1b). For each σ2, the average performance of the wn

mwf,
defined as Eemp = El

{
|sd(l)− (wn

mwf)
Hza(l)|2|ada,aia

}
, is cal-

culated, where El(·) stands for time averaging. Both the empirical
error and the approximated MSE are then averaged using 50, 000
Monte-Carlo simulations, randomized over the actual signals. In

Fig. 1 J̃a(wn
mwf ) is compared with Eemp. It is clearly depicted that

J̃a(wn
mwf ) is well within ±STD of Eemp. Our main interest in this

Fig. 1: Eemp vs. J̃a(wn
mwf ).

work is to parameterize the p.d.f of Eemp by using the statistics of
J̃a(wn

mwf ). To demonstrate the relation between the distributions

of Eemp and J̃a(wn
mwf ), a Quantile-Quantile plot of the two distri-

butions is depicted in Fig. 2a. A clear match is evident. Moreover,
Eemp histogram is almost accurately described by a Γ p.d.f as can
be deduced from Fig. 2b. To further validate the later argument,
we found the Maximum Likelihood parameters of the Γ p.d.f, κML

and θML, that fit the Eemp histogram for each value of σ2. The
resulting Γ p.d.fs are depicted together with Eemp histograms in
Fig. 2b. In addition, a comparison between κML and θML and the
theoretically obtained approximated values κJ and θJ (24) is given
in Fig. 3, demonstrating good correspondence. Finally, in Fig. 4 the

(a) Q-Q plot Eemp and J̃a. (b) Eemp Histogram.

Fig. 2: Eemp and J̃a(wn
mwf ) Statistics.

Fig. 3: Γ PDF parameters.

reliability function is presented for M = 10, and different σ2.

Fig. 4: Reliability functions.

6. DISCUSSION

A randomly positioned microphone array was considered in this
work. We analyze the free-field scenario, with one desired source,
and one interfering source impinging on a planar microphone array.
A reliability function for predicting the MWF residual error for a
given uncertainty in sensors locations is derived and validated by
simulations. The reliability function provides a powerful tool for
designing the beamformer under mismatch conditions.
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