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ABSTRACT

Physically Unclonable Functions (PUFs) have been recently
proposed as a way to include, in chips, functions that can
act as “fingerprints” of the chip, to be used in applications
like chip authentication (strong PUF) or private ID genera-
tion (weak PUF). Most of the schemes proposed for weak
PUF exploit helper data to make the PUF more reliable. The
use of an helper, however, has some drawbacks such as com-
plexity and the introduction of a possible attack point. In this
manuscript we propose the use of a new type of weak PUF
called helper-less PUFs (H-PUF) that does not require the
use of helper data. We analyze theoretically the problem of
designing an H-PUF and use the result to show how an H-
PUF can be built. We also show that the proposed PUF, albeit
being of weak type, can also be used for chip authentication.

Index Terms— security, physically unclonable functions,
chip authentication, authentication protocol

1. INTRODUCTION

The increasing requirements for security motivated a good
amount of research in the last years. A problem that it is cur-
rently analyzed is how to store a secret in a chip so that even
an attacker that is able to physically open the chip and study it,
cannot get the secret. This problem gave rise to introduction
of Physically Unclonable Functions (PUFs) [1–7].

A Physically Unclonable Function (PUF) is a function
that (typically) maps binary words to binary words and whose
behavior depends on the uncontrollable fine details of the in-
tegrated circuit (e.g., the exact channel length of a MOSFET).
This sensitivity should make the PUF practically impossible
to reproduce, even for the original chip maker. In a sense,
a PUF is like a fingerprint for the chip. As each person has
a unique fingerprint, every chip has its own PUF; as the fin-
gerprint minutiae are the result of casual variation during the
fetal development, the PUF is the result of casual variation
during chip production. As fingerprints, the ideal PUF is at
the same time random and deterministic: random because it
should be impossible to predict the PUF of a given chip, de-
terministic because the PUF of a specific chip should always
give the same result when queried with a given input.

In the literature, PUFs are typically partitioned into two
classes, strong and weak PUFs, depending on their domain
size: strong PUFs have a very large domain size (exponential
with the required silicon area); weak PUFs have a limited do-
main size that can reduce to the empty set, making the PUF a
constant function. The typical usage of a constant PUF is to
provide the chip with a unique secret ID that can be used, for
example, to generate private cryptographic keys. The typical
use of a strong PUF is for Challenge Response Pair (CRP)
based chip authentication [8, 9].

A major problem that both strong and weak PUFs must
solve is the fact that most of the proposed PUFs are not strictly
deterministic and their output to a given query can change.
When strong PUFs are used for authentication the problem
is solved by accepting the response even if the match is not
perfect. This lenience, however, also helps the attackers, who
will need to reproduce only a good approximation of the PUF.

Weak PUFs used for private key creation are even more
delicate. A single wrong bit in the key can make the whole
system useless. In order to make the PUF output more stable,
two-step schemes employing helpers based on error correct-
ing codes are usually proposed. Fig. 1 shows the basic idea.
In the first step (enrollment, carried out only once, at the first
turn-on, Fig. 1a) the PUF output X is used as noise to corrupt
a randomly chosen codeword C in order to obtain Y = X⊕C,
which is saved in a Non Volatile Memory (NVM). In the sec-
ond step (carried out every time the chip is turned on, Fig. 1b),
the PUF is queried again to obtain X̂ = X⊕E, where E is usu-
ally a binary word with low Hamming weight, X̂ is XOR-ed
with the stored word Y to obtain X̂ ⊕Y =C⊕E, from which
C and E can be computed by exploiting the properties of the
chosen error correcting code. From E and X̂ one obtains the
original X .

The main drawbacks of helper-based weak PUFs are the
necessity of including complex error correction procedures on
chip, the fact that the saved Y could leak information about X
and the possibility that the error correction step could leak
information in a side-channel attack [10].

In this work we propose the use of Helper-less PUFs (H-
PUFs), that is, weak PUFs that do not require an helper. We
first analyze theoretically the problem of constructing a re-
liable Helper-less PUF (H-PUF) and successively, from the
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Fig. 1. Example of helper-based PUF. (a) Enrollment phase,
(b) Recovering the original X .

theoretical results, we derive a procedure to build an H-PUF.
Moreover, we show that the proposed H-PUF, despite being a
weak PUF, can be used also for secure device authentication.

Prior Work As said above, a first group of PUFs is repre-
sented by strong PUFs. Several solutions have been proposed
for strong PUFs. The most common ones are arbiter-based
PUFs [2, 3], which exploit a race condition in signal propa-
gation, and ring-oscillator PUFs [4, 5, 9] that exploit the dif-
ference in the frequency of ring-oscillators. Attacks to strong
PUFs aim typically to obtain a physical model of the device
to be simulated in software [3, 9, 11].

As for weak PUFs, the most commonly proposed struc-
tures are based on Static RAM (SRAM) [6, 7], exploiting the
fact that, because of construction asymmetries, many SRAM
cells have a preferred state they fall into when left uninitial-
ized. Since the state is nevertheless random, many procedures
have been proposed to stabilize the PUF output. The most
common procedure uses a fuzzy extractor, usually based on
error correction codes [12, 13]. In [8] a stabilizer based on
pattern matching is proposed, while in [14] Index Based Syn-
drome coding is proposed. Attacks to weak PUFs usually aim
to the helper value, which is stored in a NVM which could be
accessible to the attacker [10].

Differences with Existing Literature Our approach is to-
tally different with respect to what is proposed in the liter-
ature. More precisely, (i) we show that weak PUFs can be
implemented without using an helper, avoiding in this way
the weak point usually attacked and (ii) we show that chip
authentication can be safely done with H-PUFs, removing in
this way the weak point due to the necessity of being lenient
with respect to result mismatch. Toward such an objective,
we develop a theory of H-PUFs and use the results to show
that it is possible to build an arbitrarily reliable H-PUF.

2. BUILDING AN H-PUF

Our objective is to show how to build a PUF without using
any helper data. Toward such an end, we first analyze the
problem from a theoretical point of view.

2.1. The model

We suppose that the device has a Raw Generator (RG) whose
behavior is very sensitive to variations in physical character-
istics (e.g., oxide thickness). Every time the RG is turned on
it produces a raw output that is to be used to determine the
secret ID. Let V be the set of all possible raw outputs.

Remark 2.1
Usually the raw generator will be built as an array of elementary
generators or cells (e.g., an SRAM-based PUF is made by many
SRAM cells), but this is not necessary for our development. If
the cell outputs a single bit, we will call it a binary cell.

Ideally, the behavior of a given RG should be determin-
istic, in the sense that every time it is turned on, it should
always produce the same raw output. However, since this is
not true due to noise during the power-up process, the behav-
ior of an RG is more faithfully described as a random vari-
able V assuming values in V. The distribution of V , however,
depends in turn on the random physical variations occurred
during device construction. We will model the variability in
the statistical behavior by introducing a random variable (the
statistical parameter) Q assuming values in a suitable set Q
and distributed according to density fq. The link between q
and the behavior of the RG is described by giving the condi-
tional density (or distribution or mass probability function) of
V given Q.

Example 2.1
It is worth specializing the ideas just exposed in the case of an
SRAM cell. Since the final state of an SRAM cell is a bit, the
set of possible output values is V = {0,1}. Since the behavior
of a single SRAM cell is uniquely determined by the proba-
bility q that the cell powers up in state 1, we can use q as the
statistical parameter and the interval [0,1] as Q. The parame-
ter q is itself random, since it depends on cell asymmetries re-
sulting from random manifacturing process variations [6,7,15].
Finally, in the SRAM case, the conditional probabilities of the
output given the statistical parameter are P[V = 1|Q = q] = q
and P[V = 0|Q = q] = 1−q.

2.2. The objective

Since the output of the RG is not deterministic, we are in-
terested in post-processing it to make it more “stable.” We
will achieve this by using a stabilizer, defined as a function
S : V→ I , where I is the set of the possible IDs. Let
I := S (V ) denote the r.v. associated with the generated ID.
The probability P[I = i], i ∈I , clearly depends on the distri-
bution of V ∈ V which in turn depends on the value assumed
by Q. If q ∈Q, we will say that i ∈I is a winner1 in q if

∀ j ∈I P[I = i|Q = q]≥ P[I = j|Q = q]. (1)

1Note that the winner is not necessarily unique.
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Ideally, the output of the stabilizer should not change at every
turn-on. This suggests to define the stability in q ∈Q as

ε(q) = max
i∈I

P[I = i|Q = q] (2)

and the global stability η as

η := inf
q∈Q

ε(q). (3)

Definition (3) of global stability is very strong since it re-
quires that the stability is never smaller than η. It will be
shown in Section 2.3 that this requirement is too strong and
that a “softer” version of the idea of stability ((η,δ )-stability)
is needed. We will say that a stabilizer is (η,δ )-stable if

P[{q ∈Q : ε(q)≤ η}]≤ δ . (4)

Remark 2.2
The idea is that a stabilizer is acceptable if the cases with low
stability are “corner cases” that happen infrequently. We will
show in Section 2.4 that arbitrarily good stabilizers (that is, with
η arbitrarily close to 1 and δ arbitrarily close to 0) are possible.

2.3. Theoretical bound to global stability

Ideally, we would like to design a stabilizer with global sta-
bility η as close to 1 as possible. Unfortunately, according to
the following theorem, for a large class of systems, this is not
possible. We have the following result.

Theorem 1. If Q is connected, then η ≤ 1/2.

Remark 2.3
The proof of Theorem 1 is rather technical and will not be given
here for reasons of space. An intuitive motivation can be given
with the help of Fig. 2, which shows the case of a stabilizer
S : {0,1}2→{α,β ,γ}mapping pairs of bits from two SRAM
cells into a 3-symbol output alphabet. Since the parameter set
for an SRAM cell is Q = [0,1], the parameter set for the whole
RG is Q×Q = [0,1]2, shown as a square in Fig. 2. Set Q×Q
in Fig. 2 is partitioned into three sets labeled with the corre-
sponding winning symbol. Since point q lies on the border be-
tween sets β and γ , we deduce

P[I = β |Q = q] = P[I = γ|Q = q]> P[I = α|Q = q] (5)

which implies

η ≤ ε(q) = P[I = β |Q = q]≤ 1/2 (6)

proving Theorem 1 in this very special case. It is possible to
show that the same circumstance happens as soon as the pa-
rameter set is connected.

Note that Theorem 1 is very general, since it holds inde-
pendently of the nature of the raw output that can be discrete
(e.g., bits), continuous (for soft-decision stabilizers) or multi-
dimensional (e.g., if the RG is queried many times to take a
decision). In particular, Theorem 1 shows that it is not possi-
ble, without further processing, to build globally stable stabi-
lizers, with η ' 1, for SRAM cells, the case we focus on in
the following.

Fig. 2. Example of why η ≤ 1/2. In q both β and γ have the
same probability that cannot be larger than 1/2.
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Fig. 3. Stability vs. q = P[V = 1].

2.4. Building (η,δ )-stable stabilizers

Fact 1. For every η < 1 and δ > 0 an (η,δ )-stable stabilizer
for binary cells (i.e., SRAM) and output alphabet {0,1} exists.

We will prove Fact 1 constructively. Suppose one has a bi-
nary cell, for example an SRAM cell, with P[V = 1] = q. The
cell is turned on and off K times and the relative frequency
ω of outcome “1” is measured. The output of the stabilizer
is 1 if ω > 1/2 and 0 otherwise. Since ω is approximately
N (q,q(1−q)/K), with some simple derivations one gets

ε(q) = Φ

(
√

K
|q−1/2|√

q(1−q)

)
(7)

where Φ is the cumulative distribution function of N (0,1).
It is easy to check2 that for every K, ε(0) = ε(1) = 1 and
ε(1/2) = 1/2. Moreover, as K increases, ε(q) becomes flatter
around 0 and 1, with a steeper “notch” around 1/2. Fig. 3
shows ε(q) for K = 50 and K = 500. The horizontal dotted
line corresponds to a stability equal to 0.95, the probability
that ε(q) is lower than 0.95 is the probability that q belongs
to the interval marked in Fig. 3. It is easy to show that for
every η < 1 and δ > 0 one can satisfy (4) by choosing K
large enough.

2.5. From (η,δ )-stability to global stability

A (η,δ )-stable stabilizer can be transformed into a stabilizer
with global stability η if one can recognize and discard, at

2Independently of the Gaussian approximation.
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manufacturing time, those devices whose stability is lower
than η. According to the definition of (η,δ )-stability, we
expect to discard a fraction δ of devices. Note that in this
way we actually “break” the set Q into unconnected pieces,
escaping the grip of Theorem 1.

Remark 2.4
Estimating cell reliability at run-time. An alternative approach
that does not require to store the reliability mask is to estimate
the reliability at run-time. First observe that it is reasonable to
assume that in every implementation the chip will need some
way to check if the generated ID is correct, since every scheme
that can be devised will always have a residual error probability.
The check could be done, for example, by storing in a NVM a
cryptographic hash of the ID.

Let C be the number of binary cells. This approach requires
to measure ωi, i = 1, . . . ,C, for every cell i and to set the cor-
responding output to 0 if ωi < 1/2− d, to 1 if ωi > 1/2+ d
and to “unknown” otherwise. If the number of cells in the “un-
known” state is small3, one can try all the possible combina-
tions of values for the unknown bits, until an ID that matches
with the cryptographic hash is found.

Example 2.2
In the case of an SRAM cell, one can estimate q for a newly
produced device by turning the device on and off K times, by
measuring the relative frequency ω of “1” and discarding the
device if |ω−1/2| ≤ d, where d is chosen so that the prob-
ability of accepting an unreliable device is small. According
to the model presented in [7], parameter q in (7) has distribu-
tion Fq(a) = Φ(λ1Φ−1(a)), λ1 ' 0.065. We set d = 4/

√
K,

K = 10000. By conditioning on q, it is easy to evaluate P[0.5−
d < ω < 0.5+d]< 0.006, which represents the fraction of dis-
carded cells (or of the cells whose output is evaluated as un-
known in the run-time procedure). Given q, we assume that
outcomes ω1 and ω2 of the relative frequency of “1” in two
different experiments (e.g., two successive power-up events)
are i.i.d. with distribution (7). It is easy to evaluate P[ω2 >
0.5|ω1 > 0.5 + d] > 1− 10−11. These figures show that the
proposed procedure is indeed feasible for the implementation
of a reliable weak PUF.

3. CHIP AUTHENTICATION VIA WEAK PUF

As anticipated in the Introduction, weak PUFs are considered
viable for secret ID generation, while strong PUFs are used
for chip authentication via a CRP-based protocol. In this sec-
tion we want to show that it is possible to use weak PUFs,
and the generated secret IDs, for chip authentication, and that
the resulting protocol is even stronger than the usual CRP-
based approach. The procedure described in this section can
be used, if desired, also to setup a common cryptographic key.

CRP authentication works as follows. Just after manufac-
turing, the PUF is queried in a safe environment with many
inputs (challenges) and the corresponding outputs (responses)

3This happen if the PDF of q is well “concentrated” around 0 and 1, so
that the probability of getting |ωi−1/2| ≤ d is small.

are acquired. Every challenge-response pair is saved in a
database (DB). Successively, in order to authenticate the chip,
a challenge is taken from the DB and given to the chip. The
response is checked against the response stored in the DB.

The CRP-based authentication protocol has two weak
points. Since the PUF is not deterministic, the response is
accepted even if the match is not perfect. This lenience, how-
ever, helps the attackers, who will need to reproduce only an
approximation of the PUF. Moreover, and more importantly,
it is vital that the DB of CRP is stored in a safe place since it
represents an important target for an attacker.

The procedure described in this section solves these prob-
lems by employing a weak PUF and avoiding the use of a
secret DB. We will make use of an Encrypted Key Exchange
(EKE) protocol (e.g., [16]), an encryption function E and a
cryptographic hash H [17]. We will also need a multiplicative
Abelian group D suitable for use in a Diffie-Hellman (DH)
protocol4 [18] and a generator g of D [19].

Suppose two chips (named Alice and Bob) want to au-
thenticate each other and agree on an encryption key. Let IDA
and IDB be Alice’s and Bob’s secret IDs. Alice and Bob com-
pute and publish their “public keys” KA = gIDA and KB = gIDB .

Remark 3.1
Note that, differently from the CRP DB, there is no need to
keep the public key secret [17]. Actually, the chip can safely
store it in a NVM and use it to check the generated ID (see also
Section 2.4).

As well known, an EKE allows two actors that share a se-
cret (e.g., a password) to authenticate each other and, at the
same time, agree on a shared key. The simplest way to apply
an EKE in our case is to use S = (KA)

IDB = (KB)
IDA = gIDAIDB

as shared secret. A safer variant that does not use the long-
term secret S in the EKE is the following. Alice generates a
random string XA and sends it to Bob, Bob generates XB and
sends it to Alice. Bob and Alice encrypt XA and XB with the
long-term secret S to obtain YA = E(XA;S) and YB = E(XB;S).
Finally, the short-term secret to be used in the EKE is com-
puted as G=H(YA ·YB), where · denotes string concatenation.
Note that G is a throwaway secret, so, even if recovered, it is
useless to a potential attacker.

4. CONCLUSIONS

We analyzed the problem of designing a reliable helper-less
weak PUF. We showed that, although in many cases it is not
possible to have an H-PUF with global stability larger than
1/2, it is possible, for every choice of η < 1 and δ > 0, to
build a (η,δ )-stable H-PUF based on binary cells. We also
proposed procedures for the generation of secret IDs and chip
authentication using SRAM. Quantitative figures confirm that
the presented procedures are indeed feasible for practical im-
plementation.

4For example, an elliptic curve or Z/pZ for a large prime p.
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