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ABSTRACT

We consider the problem of true random bit generation from
source vectors of independent geometric random variables,
reduced modulo M for practical implementation. Indepen-
dent geometric random variables result from measurements
of discretized Poisson processes, which are good models for
a number of physical sources. We propose a generalization of
the classical approach by Elias, compute theoretical bounds,
and evaluate the efficiency of the scheme by means of experi-
ments. The proposed technique shows a significant advantage
with respect to the classical approach.

Index Terms— Security, Cryptography, Random num-
bers.

1. INTRODUCTION

There are countless applications relating to the need to gener-
ate random data, such as simulation algorithms based on the
Monte Carlo method, network coding applications, compres-
sive sensing, encryption. In most of these applications, one
expects to receive in input “truly random bits.” In particular,
the use of pseudo-random numbers generated by numerical
algorithms, may not provide the level of security required by
cryptographic applications [1]. Even in applications where
pseudo-random numbers are acceptable, security ultimately
depends on the choice of a “seed” that should be truly random.
These considerations have motivated research on the genera-
tion or extraction of truly random bits from physical sources
[1, 2, 3, 4]. Every True Random Number Generator (TRNG)
uses internally a physical process from which the randomness
used to generate the random bits is harvested. Several natural
processes (e.g., radioactive decay, photons landing on a pho-
todiode, shot noise in electronic circuits) are without memory
and follow a Poisson law. Therefore, it is of practical inter-
est to devise a simple procedure to extract randomness from
these sources in an efficient way, where the word “efficient”
means that it must be possible to have the rate of bit produc-
tion as close as desired to the information content of the phys-
ical process. This paper is motivated by the problem of gen-
erating truly random bits from sources that can be described

by a Poisson process [5].

2. RELATION TO PRIOR WORK

The problem of true random number generation dates back
to von Neumann [6] who considered the problem of simulat-
ing an unbiased coin by using a biased coin with unknown
probability. Denoting with T and H the tail and head out-
comes, respectively, he observed that considering two con-
secutive independent coin tosses, the events TH and HT are
exactly equiprobable. Thus, mapping TH → 0, HT → 1,
while discarding the events TT , HH , generates a sequence
of truly random bits even if the original coin is biased. More
efficient algorithms for generating random bits from a biased
coin were proposed by various authors [7, 8, 9, 10]. See [11]
for a more comprehensive bibliography, where the problem to
generate random bits from a correlated source is considered.
Elias [8] was the first to devise an optimal procedure in terms
of information efficiency, namely, the expected number of un-
biased random bits generated per coin toss is asymptotically
equal to the entropy of the biased coin. Starting from a source
that produces bit vectors n = [N1, ..., NL], of binary indepen-
dent random variables (rv) Ni ∈ {0, 1}, P[Ni = 0] = q, the
procedure partitions the range of n into Q classes C1, ..., CQ,
where class Ci consists of all the permutations (with repe-
tition) of the bit string with a given Hamming weight. Due
to independence, the elements of each class Ci are therefore
equiprobable. The procedure to generate a bit string corre-
sponding to an instance vector [n1, ...., nL], requires to iden-
tify the class Ci to which n belongs, evaluate its cardinality j
and a number b ∈ {0, ..., j − 1} which unambiguously iden-
tifies n within the class. Then the Elias mapping can be used.
In particular, define as ki, i = 0, ..., Nj , the positions of the
Nj + 1 bits equal to one in the binary representation of j, so
that

j =

Nj∑
i=0

2ki .

If j is an even number, one can construct a one-to-one corre-
spondence between b and an appropriate bit string, in a way
that the generated bit sequence consists of independent and
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equiprobable symbols. As a matter of fact, one can associate
the values b = 0, ..., 2k0 − 1, to the 2k0 bit strings of length
k0, the values b = 2k0 , ..., 2k0 + 2k1 − 1 to the 2k1 bit strings
of length k1, and so on. In this way, since b are independent
random variables uniformly distributed in {0, ..., j − 1}, the
corresponding bit strings will have independent and equiprob-
able symbols. If j is an odd number, one of the values of b,
say b = j− 1, can be associated to the output of a null-string.
Once j and b are known, the Elias mapping procedure is easy
to implement.

In this paper, we extend the original approach of Elias by
considering partitions of the range of n into generic classes
of equiprobable vectors, not just permutations as in the orig-
inal procedure. We derive lower and upper bounds for the
efficiency of this generalized approach. We then consider the
case of vectors generated from measurements of a Poisson
process, and present a procedure that has significant advan-
tages with respect to the original Elias’ scheme.

3. MAIN RESULT

We will consider sources that generate vectors n = [N1, ...,
NL], where Ni ∈ A are independent rv, and A is a generic
finite alphabet. A conditioner is a map E(n) : AL → {0, 1}∗,
mapping vector n to the (possibly empty) bit string sn, with
length `(sn) = `n. A conditioner is admissible if

∀s ∈ Im E ,P[E(n) = s|`n = |s|] = 2−|s|,

where |s| denotes the length of the bit string. It is possible
to show that this property guaranties that the bit sequences
obtained by concatenating the strings E(ni) corresponding
to successive source vectors n0,n1, ...,nK , are truly random
and robust with respect to the attacks of an opponent who
could observe the numberK and the length of the correspond-
ing bit string.

Let us define L̄ = E[`n] and denote with R = L̄/L
the rate of the conditioner. Let C1, C2, ..., CQ, be a parti-
tion of AL so that all the outcomes belonging to class Ci are
equiprobable, and let E(n) be constructed according to the
Elias mapping described above. It is possible to show that

H(N)− H(`n)

L
− log2(Q)

L
≤ R ≤ H(N)− H(`n)

L
,

whereH(X) denotes the entropy of rvX [12]. Moreover, for
L → +∞, we have H(`n)/L → 0. For the original Elias’
scheme, where classesCi are obtained with permutations, and
for the classes we propose below for geometric rv, we also
have log2(Q)/L → 0, so the techniques are asymptotically
optimal. The proofs of these properties are omitted here for
space reasons.

4. APPLICATION TO POISSON PROCESSES

We take measurements of a physical process described by a
homogeneous Poisson process with intensity λ [5, 13]. We
discretize the time axis into intervals of equal size ∆, and
check if one or more arrivals occur in each interval. The
observations are therefore a discrete time Bernoulli process,
where the probability of 0 is equal to p = e−λ∆. The inter-
arrival times Ni of the discretized process follow a geometric
distribution with probability mass function

p(k) = (1− p) pk, k = 0, 1, ... . (1)

Our objective is to devise a procedure to generate a sequence
of truly random bits from vectors n = [N1, ..., NL], whereNi
are independent geometric random variables.

The original scheme proposed by Elias for the construc-
tion of classes of equiprobable vectors is based on the fact
that, since Ni are independent random variables, the permu-
tations (with repetition) of the values of the vector all have the
same probability. For example, the results

[6442], [6424], [6244], [4642], [4624], [4462],

[4426], [4264], [4246], [2644], [2464], [2644]

are obviously equiprobable. Note that the cardinality of the
class of length-L vectors with j different symbols, each ap-
pearing ki times, k1+...+kj = L, is given by the multinomial
coefficient (

L
k1, k2, · · · kj

)
=

L!

k1!k2! · · · kj !
.

For example, for L = 4, k1 = 1, k2 = 1, k3 = 2, there are
12 permutations as in the example above. We will call the
classes constructed using this procedure the Elias classes.

The key idea proposed in these notes, for the special case
of geometric random variables, is based on the following rea-
soning. A sequence [n1, n2, ..., nL] of natural numbers such
that n1 + n2 + · · · + nL = K is called a weak composition
of K with L parts. In case Ni have a geometric distribution,
due to the fact that p(n) is the product of L probability mass
functions of type (1), all the weak compositions with sum K
will have the same probability, and they can be enumerated to
generate bit strings as in the Elias mapping. It is well known
that the number of weak compositions of K with L parts is
given by (

L+K − 1
K

)
.

For example, with L = 3 and K = 3, we have the following
10 possibilities

[003], [030], [300], [012], [021],

[102], [120], [210], [201], [111].
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Note that, in the original scheme of Elias, this set would be
split into three classes, with 3, 6, and 1 element, respectively.
We expect therefore that the proposed method can attain a
higher efficiency since a more numerous class can be associ-
ated with the generation of longer bit strings.

As a matter of fact, in a practical implementation, it is
unfeasible to deal directly with instances ni of geometric ran-
dom variables, since they can assume, although with vanish-
ing probability, unlimited values not representable in a finite
precision system. Alternatively, one can easily deal with Ni
modulo some predefined value M . It is easy to see that the
resulting random variable has a probability mass function

pn(k) =
(1− p)
1− pM

pk, k = 0, ...,M − 1,

pn(k) = 0, elsewhere, (2)

so that vectors [n1, n2, ..., nL] with the same sum n1 + n2 +
· · · + nL = K will still be equiprobable. The cardinality of
the set of vectors with sum equal to K, constrained by the
fact that 0 ≤ ni < M , can be computed according to the
following reasoning.

Consider the polynomial

p(x) = (1 + x+ x2 + ...+ xM−1)2

= p0 + p1x+ p2x
2 + ...+ p2M−2x

2M−2

The coefficient pk of xk in p(x), 0 ≤ k < 2M − 1, will
count all the possible products xrxq , 0 ≤ r, q < M , such that
r + q = k. Therefore, the coefficient pk represents exactly
the cardinality of the set of pairs of naturals [n1, n2] with sum
equal to k, and constrained by the fact that 0 ≤ ni < M . In
general, the coefficient pk of

p(x) = (1 + x+ x2 + ...+ xM−1)L

will count the cardinality of the set of length-L vectors
[n1, n2, ..., nL] with sum equal to k and 0 ≤ ni < M .
For instance, when L = 3, M = 3 and k = 3, we have the
following 7 possibilities

[012], [021], [102], [120], [210], [201], [111].

5. VECTOR ENUMERATION

Let us now turn to the the problem of the enumeration of the
elements of a class of equiprobable vectors. This problem
can be solved via a look-up table, but the approach is readily
unfeasible even for small L.

A general enumeration algorithm which allows to uniquely
assign a certain number 0 ≤ b < j to a particular vector
[n1, n2, ..., nL] belonging to a class of cardinality j, can
be obtained by partitioning the vectors in the class recur-
sively, starting with the value of the first vector compo-
nent n1. We will exemplify the procedure considering the

case of length-L vectors with the same sum K and con-
strained by 0 ≤ ni < M , but the same reasoning can
be applied for the enumeration of the Elias classes or of
weak compositions. Let us denote with NM (l, k) a func-
tion that returns the cardinality of the class of constrained
l-length vectors with sum k. Function NM (l, k) can be eas-
ily computed according to the results presented above. If
n1 = 0, then NM (L − 1,K) vectors are possible, corre-
sponding to all the admissible values of [n2, ..., nL]. There-
fore, if n1 = 0, we restrict b to 0, ..., NM (L − 1,K) − 1.
If n1 = 1, then N(L − 1,K − 1) vectors are possi-
ble, to which we reserve indices NM (L − 1,K) ≤ b <
NM (L− 1,K) +NM (L− 1,K − 1). We proceed by parti-
tioning the set of indices for all possible values of n1 so that a
particular value of n1 identifies one set of the partition. Then,
for each value of n2, we further partition the subset identified
by n1. In particular, the first NM (L − 2,K − n1) indices
of the subset are reserved to the vectors with n2 = 0, and
so on, as before. We proceed with all the vector components
till the last one, which originates partitions with one single
element. The R©Matlab function of Fig. 1 is a code for the
procedure. In the code, a is a matrix where a(l,k+1) con-
tains the value NM (l, k). In the procedure, b keeps track of
the smallest index in the current partition, until the partition
contains one single element.

-------------------------------------
function y=enumerateM(n,a)

k=sum(n);
b=0;
i=1;
l=length(n);
while ((k>0) && (l>=2)),

if n(i)>=1,
for j=1:n(i)-1,

b=b+a(l-1,k-j+1);
end;
b=b+a(l-1,k+1);

end;
k=k-n(i);
l=l-1;
i=i+1;

end;

y=b;
-------------------------------------

Fig. 1. R©Matlab function for the enumeration of constrained
vectors with the same sum.

Note that a matrix containing all the values NM (l, k), l =
1, ..., L,, k = 0, ..., L(M − 1) has L(1 + (M − 1)(L+ 1)/2)
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Fig. 2. Comparison between the Elias mapping and the proposed one. (a) M = 16, (b) M = 64.

non zero-elements. For instance, when L = 4 and M = 64,
there are 634 non-zero elements.

6. EXPERIMENTS

In this section, we compare the performance of the proposed
scheme with the one obtained using the original Elias classes.
We assume that n = [N1, ...., NL] is a vector of indepen-
dent geometric random variables, represented modulo M ,
each with probability mass function given by (2). It is well
known that the entropy of the geometric random variable with
probability mass function (1), is

Hg(p) = − log2(1− p)− p

1− p
log2 p.

The entropy of the geometric random variable reduced mod-
ulo M is

Hg,M (p) = − log2

1− p
1− pM

− p(MpM −MpM−1 + 1− pM )

(1− pM )(1− p)
log2 p.

As explained above, the Elias mapping sn = E(n) generates
a bit string sn of length `(sn). For a given input vector n,
sn will depend on the method used to form classes (e.g., the
Elias classes or the proposed ones).

It is therefore easy to compute the efficiency of the two
schemes on the basis of the average output bit string length

L̄ =
∑
n

`(sn)p(n), n = [n1, ..., nL],

where p(n) is the product of L probability mass functions
of type (2). Table 1 shows R = L̄/L for the two methods
when the variables are represented modulo M = 16. We set

p = 0.9. Note that in this case the entropy of the source is
Hg(p) = 4.6900 and Hg,M (p) = 3.8411.

For larger values of L and M we simulated T = 15000
realizations of n, concatenate the output binary strings into
one string sT and plot in Fig. 2 the values `(sT )/(LT ) for
M = 16 and M = 64, L = 2, ..., 10. Note that for M =
64, we have Hg,M (p) = 4.6768, due to the fact that the
modulo operation has less influence for larger M . Simula-
tions were performed in R©Matlab using the default uniform
random number generator Mersenne Twister. Although both
methods approach the entropy of the source as L increases,
the table and the figures clearly show the advantage of the
proposed method.

Table 1. Average length, in bit/symbol for the Elias classes
and the proposed ones.

L 2 3 4 5
Elias classes 0.4617 0.4820 0.8104 0.9164

Proposed 1.1272 1.8488 2.2985 2.5738

7. CONCLUSIONS

In this paper we considered the problem of true random bit
generation from source vectors of reduced independent geo-
metric random variables, originating from measurements of
a discretized Poisson process. We proposed a generalization
of the classical approach by Elias, and derived theoretical re-
sults about the efficiency of the proposed approach. The ad-
vantages of the proposed solution are confirmed by experi-
ments. The procedure can be practically used, for example,
in a scheme where radioactive decay is the physical source
[14, 15]. The bits generated by the proposed simple procedure
can be used to generate truly random bits for key generation
in cryptography applications.
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