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ABSTRACT

In this paper, the privacy problem of a tandem distributed
detection system vulnerable to an eavesdropper is proposed
and studied in the Bayesian formulation. The privacy risk is
evaluated by the detection cost of the eavesdropper which is
assumed to be informed and greedy. For the sensors whose
operations are constrained to suppress the privacy risk, it is
shown that the optimal detection strategies are likelihood-
ratio tests. This fundamental insight allows for the opti-
mization to reuse known algorithms extended to incorporate
the privacy constraint. The trade-off between the detection
performance and privacy risk is illustrated in an example.

Index Terms— Likelihood-ratio test, person-by-person
optimization, physical-layer security

1. INTRODUCTION

Because of their wide-range of applications, sensor networks
have attracted much attention recently. Although a large num-
ber of fruitful studies have been done, there are still some
challenges in the development of sensor network technolo-
gies. Among them, the privacy problem strongly influences
users’ acceptance of some sensor network applications, e.g.,
for health monitoring. In face of multiple privacy threats [1],
many efforts have been made to design secure sensor net-
works, e.g., protecting the confidential data by cryptography
[2], attack detection approaches in the centralized and neigh-
bors’ cooperative ways [3, 4], and routing security based on
reputation-based scheme [5] and broadcast authentication [6].
Recently, a novel idea has been proposed to take the privacy
issue into account in the design of physical-layer distributed
detection. In [7], Byzantine attacks in distributed detections
were discussed in the game-theoretic framework. In [8], the
eavesdropper was assumed to be interested in the data trans-
mission state of the system. However, an eavesdropper in
practice can be more aggressive. In [9], the privacy risk was
assessed by an entropy-based metric to measure the differ-
ence between Kullback-Leibler distances of the fusion node
and eavesdropper.

In this work, we propose a detection-operational privacy
metric and study the tandem distributed Bayesian detection
problem subject to a physical-layer privacy constraint in the
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Fig. 1. The studied system model consists of a binary hypoth-
esis H , three independent sensing channels C1, C2, and CF,
three sensors S1, S2, and SF which make binary decisions U1,
U2, and UF (the final decision) based on their observations Y1,
(U1, Y2), and (U2, YF) independently, and an eavesdropper E
which intercepts the decision U1 (Scenario A) or U2 (Scenario
B) and makes its decision UE.

privacy-utility framework. Related problems in a parallel dis-
tributed detection system and with the Neyman-Pearson cri-
terion are studied in [10, 11]. From a broader perspective,
privacy-utility problems have been discussed in many other
fields. The differential privacy problem [12] and conic pri-
vacy problem [13] are studied to guarantee the statistic pri-
vacy by sanitizing mechanisms. Information-theoretic tools
are used in [14, 15].

2. TANDEM DISTRIBUTED DETECTION WITH AN
EAVESDROPPER

As shown in Figure 1, the studied system consists of a
binary-hypothesis phenomenon H with known prior prob-
abilities pH(0) and pH(1), three tandem-connected sensors
S1, S2, and SF (the fusion node), and an eavesdropper E. For
i ∈ {1, 2, F}, each sensor makes a binary decision Ui based
on the decision of the previous sensor (if available) and an
observation Yi which is corrupted by the sensing channel Ci.
We assume that sensing channels are independent and their
likelihood ratios contain no point masses of probability. The
eavesdropper E is supposed to overhear the link S1−S2 (Sce-
nario A) or S2 − SF (Scenario B) and to make its own binary
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Table 1. Detection rule candidates of the eavesdropper.
uE

u1 or u2 Φ1
E Φ2

E Φ3
E Φ4

E
0 0 1 0 1
1 0 1 1 0

decision UE based on the local decision U1 or U2. Detection
and fusion tests of sensors, fusion node, and eavesdropper
are functions of their own observations and are denoted by
Φ1(y1), Φ2(u1, y2), ΦF(u2, yF), and ΦE(ui), i = 1 or 2.
Since ΦE’s input and output are binary variables, it has four
candidates as listed in Table 1. In this work, we assume that
the eavesdropper is informed and greedy, i.e., the eavesdrop-
per has a full knowledge of the distributed detection system
and always employs the best detection strategy which causes
the worst privacy problem.

3. DISTRIBUTED BAYESIAN DETECTION

Denote the detection cost of the fusion node to make a deci-
sion uF given the hypothesis realization h by cUF,H(uF, h) and
assume that cUF,H(uF, h)|uF ̸=h > cUF,H(uF, h)|uF=h ≥ 0.
The average detection cost of making a fusion decision is ex-
pressed as cF =

∑
uF,h

pUF,H(uF, h)cUF,H(uF, h). The dis-
tributed Bayesian detection problem aims to design the opti-
mal system which minimizes cF and consists of detection and
fusion tests Φ∗

1, Φ∗
2, and Φ∗

F:

min
Φ1,Φ2,ΦF

cF. (1)

The method of person-by-person optimization (PBPO) [16]
has been used as an indirect method to approach Φ∗

1, Φ∗
2, and

Φ∗
F by iteratively refining local person-by-person optimal tests

Φ∆
1 , Φ∆

2 , and Φ∆
F .

According to [17, Section 4.2], given Φ2 and ΦF, cF can
be rewritten as

cF = c1 + a1p
F
1 − b1p

D
1 , (2)

where a1, b1, and c1 are constant coefficients determined by
Φ2 and ΦF; the false alarm and detection probabilities are de-
fined as pF

1 = pU1|H(1|0) and pD
1 = pU1|H(1|1) respectively.

Then Φ∆
1 can be a likelihood-ratio test (LRT). We can con-

clude that it is sufficient to consider a LRT for Φ∗
1.

Let i, j ∈ {2, F} with i ̸= j. Denote the previous node of
Si as Sk. When Φ1 and Φj are fixed, cF can be rewritten as

cF = ci+aip
F
i|uk=0− bip

D
i|uk=0+ c′i+a′ip

F
i|uk=1− b′ip

D
i|uk=1,

(3)
where constants ai, bi, ci, a′i, b

′
i, and c′i are determined by

the given Φ1 and Φj ; the conditional false alarm and detec-
tion probabilities are defined as pF

i|uk=0 = pUi|Uk,H(1|0, 0),
pD
i|uk=0 = pUi|Uk,H(1|0, 1), pF

i|uk=1 = pUi|Uk,H(1|1, 0), and

pF
1

0

1

1

ROC Curve

pD
1

Lower Boundary

Fig. 2. Illustration of a typical operation region R1.

pD
i|uk=1 = pUi|Uk,H(1|1, 1). With different observations of

uk, Φ∆
i (0, yi) and Φ∆

i (1, yi) can be solved independently as
LRTs. Therefore, it is sufficient to consider LRTs for Φ∆

2 ,
Φ∆

F , Φ∗
2, and Φ∗

F.
Any detection test Φ1(y1), Φ2(0, y2), Φ2(1, y2), ΦF(0, yF),

or ΦF(1, yF) can be represented as an operation point (pF
1, p

D
1 ),

(pF
2|u1=0, p

D
2|u1=0), (p

F
2|u1=1, p

D
2|u1=1), (p

F
F|u2=0, p

D
F|u2=0), or

(pF
F|u2=1, p

D
F|u2=1) in the (conditional) operation region R1,

R2|u1=0, R2|u1=1, RF|u2=0, or RF|u2=1. All (conditional)
operation regions have the properties:

1. A (conditional) operation region is a convex set whose
upper and lower boundaries are point symmetric with
respect to (0.5, 0.5) and intersect at (0, 0) and (1, 1).

2. Points on upper and lower boundaries represent LRTs.
3. The upper boundary, also known as the receiver operat-

ing characteristics (ROC) curve, is increasing, concave,
and above the line of equal (conditional) false alarm
and detection probabilities [18, Chapter 2].

4. PRIVACY IN DISTRIBUTED BAYESIAN
DETECTION

Due to the space limitation, we will first focus on Scenario B
and then give results about Scenario A directly.

4.1. Privacy Metric

The eavesdropper is assumed to be informed of the distributed
detection system and curious about the binary hypothesis. In
this work, we consider a Bayesian scenario where the eaves-
dropper minimizes its average detection cost by manipulating
the local detection rule candidates listed in Table 1. Then, the
privacy metric in this distributed Bayesian detection problem
is the minimum average detection cost of the eavesdropper,

cmin
E = min

i∈{1,2,3,4}
ciE, (4)

where ciE represents the average detection cost when Φi
E is

employed. A higher cmin
E indicates a more secure detec-

tion system, and vice versa. Similarly, denote the detection
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cost of the eavesdropper to make a decision uE given the
hypothesis realization h as cUE,H(uE, h) and assume that
cUE,H(uE, h)|uE ̸=h > cUE,H(uE, h)|uE=h ≥ 0. Then,

c1E = pH(0)cUE,H(0, 0) + pH(1)cUE,H(0, 1),

c2E = pH(0)cUE,H(1, 0) + pH(1)cUE,H(1, 1),

c3E =+ pF
2|u1=0(1− pF

1)pH(0){cUE,H(1, 0)− cUE,H(0, 0)}

− pD
2|u1=0(1− pD

1 )pH(1){cUE,H(0, 1)− cUE,H(1, 1)}

+ pF
2|u1=1p

F
1pH(0){cUE,H(1, 0)− cUE,H(0, 0)}

− pD
2|u1=1p

D
1 pH(1){cUE,H(0, 1)− cUE,H(1, 1)}+ c1E

,

c4E = c1E + c2E − c3E.
(5)

The first two terms in (5) are constants and lead to the upper
bound of the privacy metric that cmin

E ≤ min{c1E, c2E}.

4.2. Privacy-Constrained Distributed Bayesian Detection

Next, we take the threat of the eavesdropper into account. The
privacy-constrained distributed Bayesian detection problem is
formulated as

min
Φ1,Φ2,ΦF

cF,

s.t. cmin
E ≥ β.

(6)

Similar to the problem (1), the privacy-constrained problem
aims to find the optimal distributed detection design with the
minimum cF. The condition cmin

E ≥ β guarantees the pri-
vacy of the obtained design. Because of the upper bound
of cmin

E , this privacy-constrained problem is feasible only if
β ≤ min{c1E, c2E}. Notice that the condition cmin

E ≥ β is
equivalent to ciE ≥ β,∀i. By substituting terms in (5) into
this equivalent condition, the privacy-constrained optimiza-
tion problem can be rewritten as

min
Φ1,Φ2,ΦF

cF,

s.t. c1E, c
2
E ≥ β ⇒ β ≤ c1E ≤ c1E + c2E − β,

c3E, c
4
E ≥ β ⇒ β ≤ c3E ≤ c1E + c2E − β.

(7)

Denote detection and fusion tests of the optimal privacy-
constrained tandem distributed detection system by Φ#

1 , Φ#
2 ,

and Φ#
F . For i ∈ {1, 2, F}, some properties of Φ#

i can be
derived by studying its corresponding local person-by-person
optimal test Φ�

i .

Remark 1. Since the operation of SF is not constrained, the
conclusion of it remains the same, i.e., it is sufficient to con-
sider LRTs for Φ�

F and Φ#
F .

When Φ2 and ΦF are fixed, the privacy-constrained op-
eration region RP

1 is the available region in R1 confined by
β ≤ c3E ≤ c1E + c2E − β. Such a condition, when substituting
c3E by the function of pF

1 and pD
1 shown in (5), can be rewritten

as parallel linear constraints:

g1p
F
1 + θL

1 ≤ pD
1 ≤ g1p

F
1 + θU

1 , (8)

where the constant coefficients g1, θL
1 , and θU

1 are determined
by Φ2. Then the optimization of Φ1 (or the equivalent opera-
tion point (pF

1, p
D
1 )) to minimize cF reduces to

min
RP

1

cF. (9)

Lemma 1. It is sufficient to consider LRTs for Φ�
1 and Φ#

1 .

Proof. Define a set L1(θ1) and its subset I1(θ1) as

L1(θ1) = {(pF
1, p

D
1 ) : p

D
1 = g1p

F
1 + θ1} ∩ R1,

I1(θ1) = {(pF
1, p

D
1 ) : p

D
1 = g1p

F
1 + θ1} ∩ ∂R1,

(10)

where ∂R1 denotes the boundary of R1. Then, we have RP
1 =∪

θL
1≤θ1≤θU

1
L1(θ1). The optimization problem in (9) can be

rewritten as
min

θL
1≤θ1≤θU

1

min
L1(θ1)

cF. (11)

Given any θ1 ∈ [θL
1 , θ

U
1 ], we focus on the inner optimization.

By substituting cF by the function of pF
1 and pD

1 shown in (2),
the inner optimization can be rewritten as

min
L1(θ1)

c1 + a1p
F
1 − b1p

D
1 . (12)

Since R1 is a convex set, there are at most two elements in
I1(θ1) which are the intersection points of the line pD

1 =
g1p

F
1 + θ1 with ∂R1. Let us discuss the optimization of (12)

in different cases:

1. If I1(θ1) = ∅, L1(θ1) = ∅.
2. If I1(θ1) is a singleton consisting of only one intersec-

tion point, L1(θ1) = I1(θ1) and the single intersection
point is the optimal operation point.

3. If there are two intersection points in I1(θ1), L1(θ1) is
a line segment between the two intersection points. By
substituting pD

1 = g1p
F
1+θ1 in (12), the inner optimiza-

tion problem becomes

min
L1(θ1)

c1 − b1θ1 + (a1 − b1g1)p
F
1. (13)

In this case, the optimal point in L1(θ1) is the point
with the maximum or minimum pF

1 which corresponds
to one of the two intersection points in I1(θ1).

Therefore, the optimal point in any non-empty L1(θ1), θ1 ∈
[θL

1 , θ
U
1 ], is an intersection point in I1(θ1). Since points on

the boundary of R1 represent LRTs, the optimal operation
point in any non-empty L1(θ1) can represent a LRT. All solu-
tion candidates of the outer optimization in (11) can be LRTs.
Thus, it is sufficient to consider LRTs for Φ�

1 and Φ#
1 .

When Φ1 and ΦF are fixed, Φ�
2 consists of jointly optimal

Φ�
2 (0, y2) and Φ�

2 (1, y2) which are coupled through the pri-
vacy constraint β ≤ c3E ≤ c1E + c2E − β. When substituting
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c3E by the function of pF
2|u1=0, pD

2|u1=0, pF
2|u1=1, and pD

2|u1=1

shown in (5), the privacy constraint can be rewritten as:

f2p
F
2|u1=0 − h2p

D
2|u1=0 + f ′

2p
F
2|u1=1 − h′

2p
D
2|u1=1 ≥ β − c1E,

f2p
F
2|u1=0 − h2p

D
2|u1=0 + f ′

2p
F
2|u1=1 − h′

2p
D
2|u1=1 ≤ c2E − β,

(14)
where the constant coefficients f2, f ′

2, h2, and h′
2 are deter-

mined by Φ1. Define the joint privacy-constrained operation
region RP

2 as a set of
(
(pF

2|u1=0, p
D
2|u1=0), (p

F
2|u1=1, p

D
2|u1=1)

)
where (pF

2|u1=0, p
D
2|u1=0) ∈ R2|u1=0, (pF

2|u1=1, p
D
2|u1=1) ∈

R2|u1=1, and they jointly satisfy the privacy constraint in
(14). Then the optimization of Φ2 to minimize cF reduces to

min
RP

2

cF. (15)

Lemma 2. It is sufficient to consider LRTs for Φ�
2 and Φ#

2 .

Proof. Define l2(d2), l′2(d
′
2), L2(d2), L′

2(d
′
2), and C2(d2, d′2):

l2(d2) = {(pF
2|u1=0, p

D
2|u1=0) : f2p

F
2|u1=0 − h2p

D
2|u1=0 = d2},

l′2(d
′
2) = {(pF

2|u1=1, p
D
2|u1=1) : f

′
2p

F
2|u1=1 − h′

2p
D
2|u1=1 = d′2},

L2(d2) = l2(d2) ∩R2|u1=0, L′
2(d

′
2) = l′2(d

′
2) ∩R2|u1=1,

C2(d2, d′2) = L2(d2)× L′
2(d

′
2).

(16)
We can express RP

2 =
∪

β−c1E≤d2+d′
2≤c2E−β C2(d2, d′2). The

optimization problem in (15) can be rewritten as

min
β−c1E≤d2+d′

2≤c2E−β
min

C2(d2,d′
2)
cF. (17)

Given any (d2, d
′
2) which satisfies β−c1E ≤ d2+d′2 ≤ c2E−β,

we again focus on the inner optimization. By substituting
cF by the function of pF

2|u1=0, pD
2|u1=0, pF

2|u1=1, and pD
2|u1=1

shown in (3), the inner optimization can be divided into two
independent optimization problems as

min
L2(d2)

c2 + a2p
F
2|u1=0 − b2p

D
2|u1=0,

min
L′

2(d
′
2)
c′2 + a′2p

F
2|u1=1 − b′2p

D
2|u1=1.

(18)

Following a similar proof as Lemma 1, the optimal point com-
bination in any non-empty C2(d2, d′2) can be a combination of
two LRTs. That means all solution candidates of the outer op-
timization in (17) can be combinations of LRTs. Therefore, it
is sufficient to consider LRTs for Φ�

2 (0, y2), Φ
�
2 (1, y2), Φ

�
2 ,

and Φ#
2 .

Theorem 1. When U2 is intercepted by the eavesdropper, it
is sufficient to consider LRTs for Φ#

1 , Φ#
2 , and Φ#

F .

Theorem 1 is a summary of Remark 1 and Lemmas 1-2.
When the local decision U1 is intercepted by the eavesdrop-
per, another privacy-constrained tandem distributed Bayesian
detection problem can be formulated. Following a similar
analysis, we can obtain the same conclusion as
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E

Fig. 3. The enhancement of privacy (higher cmin
E ) is at the cost

of degeneration of detection performance (higher cF). The
optimal privacy-constrained design has a better performance
than the design which has only the fusion link H − SF active.

Theorem 2. When U1 is intercepted by the eavesdropper, it
is sufficient to consider LRTs for Φ#

1 , Φ#
2 , and Φ#

F .

Remark 2. The method of PBPO can be extended to incor-
porate the privacy constraint and approach Φ#

1 , Φ#
2 , and Φ#

F
by iteratively refining Φ�

1 , Φ�
2 , and Φ�

F .

5. AWGN EXAMPLE

Here, we specify the independent sensing channels in Figure
1 and model Ci as Yi = H + Ni where the additive white
Gaussian noise Ni ∼ N (0, 1) and i ∈ {1, 2, F}. The detec-
tion costs of the fusion node and eavesdropper are assigned
as [17, Example 4.2]. Then, cF reduces to the average detec-
tion error probability of SF and cmin

E represents the minimum
average detection error probability of the eavesdropper.

In Scenario B, optimal privacy-unconstrained and privacy-
constrained tandem distributed detection designs are ob-
tained by PBPO methods. For the privacy-constrained prob-
lem, the highest level of privacy is guaranteed by setting
cmin

E ≥ β = min{c1E, c2E}. As shown in Figure 3, optimal
distributed detection system designs are compared in terms
of the detection performance cF and privacy risk cmin

E .

6. CONCLUSION

In this work, we propose the minimum Bayesian detection
cost of the eavesdropper as the privacy metric. The privacy-
constrained tandem distributed Bayesian detection problem is
formulated to find the optimal detection system design with
a privacy guarantee. We show that it is sufficient to consider
LRTs for detection and fusion tests in the optimal privacy-
constrained design. This conclusion is helpful to simplify the
privacy-constrained optimization problem since the standard
PBPO method can be easily extended. Besides the trade-off
between the privacy risk and detection performance, results of
the example show that the detection performance is improved
when the remote sensor sends decisions which are useful for
the fusion node while nonsense for the eavesdropper.
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