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ABSTRACT

On-the-fly reconfigurability capabilities and learning
prospectives of Cognitive Radios inherently bring a set of
new security issues. One of them is intelligent radio fre-
quency jamming, where adversary is able to deploy advanced
jamming strategies to degrade performance of the communi-
cation system. In this paper, we observe the jamming/anti-
jamming problem from a game-theoretical perspective. A
game with incomplete information on opponent’s payoff and
strategy is modelled as a Markov Decision Process (MDP).
A variant of fictitious play learning algorithm is deployed to
find optimal strategies in terms of combination of channel
hopping and power alteration anti-jamming schemes.

Index Terms— jamming, anti-jamming, cognitive radio,
game theory, fictitious play, markov models, channel surfing,
power alteration

1. INTRODUCTION

Software Defined Radios (SDRs) and Cognitive Radios (CRs)
[1] have over the last decade emerged as potential solutions to
spectrum underutilization problem. However, the introduced
reconfigurability potentials and unique cognitive characteris-
tics are also bringing a set of new security risks and issues [2].
Among them, Primary User Emulation Attacks [3, 4], Byzan-
tine Attacks [5, 6] and Intelligent Jamming Attacks [7, 8, 9]
have received particular attention from the research commu-
nity. Radio frequency (RF) jamming refers to intentional cre-
ation of interference at the target receiver with the aim of dis-
rupting communication. RF jamming has found particular
application in military domain, where various jamming and
anti-jamming systems were studied [10, 11].

Game theory - a study of decision making under com-
petition - has recently sparked interest as a tool for mathe-
matical formalization of the Intelligent Jamming problems.
Using game theory makes it possible to model and analyze
interactions between the transmitters and the jammers in the
system, as their overall goals are typically negatively corre-
lated. Authors in [12] have formulated the problem as a zero-
sum stochastic game, where channel hopping was considered

as the anti-jamming scheme, and minimax-Q as the learning
mechanism. The method was extended in [13], comparing
the results of Q-learning with those of the policy iteration
scheme. In [14] and [15], authors considered multi-carrier
power allocation as an anti-jamming strategy, and also for-
mulated the games as zero-sum.

In this work, we extend upon the aforementioned ideas
and formulate a game which takes into account both channel
hopping and power alteration as defense strategies. By intro-
ducing the hopping and transmission costs, as well as diverse
reward factors for the transmitter and jammer side, the game
is formulated as non-zero-sum. Finding equilibrium points
in stochastic non-zero-sum games such as this one is a non-
trivial task. Hence, we focus on simulation results for finding
near-optimal strategies for a game with incomplete informa-
tion on user payoffs and strategy distributions. A variant of
fictitious play online learning algorithm [16] is proposed for
updating the stochastic distributions of such strategies.

To the best of our knowledge, this is the first game-
theoretical contribution which considers an increased action
space created by combining channel hopping and power al-
teration schemes. Starting from a naive game where players
take their decisions retroactively, the motivation for switching
to a proactive game is shown. A stochastic decisioning pol-
icy is proposed as optimal policy for fictitious play learning
algorithm.

The remainder of the paper is organized as follows: sec-
tion 2 describes the system model. Game formulation, along
with evolution from the naive deterministic game to the proac-
tive stochastic game is presented in section 3. Simulation
results for a game with 2 channels and 2 discrete values of
transmission power are presented in section 4, whereas con-
clusions and the roadmap are given in section 5.

2. SYSTEM MODEL

Consider a transmitter-receiver pair that is trying to maintain
continuous communication over one of the n f pre-assigned
channels, and a jammer that is trying to disrupt the communi-
cation by creating interference. All of the nodes are assumed
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to be equipped with SDR / CR technology, which allows them
to alter their transmission power and transmission frequency
on-the-fly. Transmitter and receiver have the exclusive spec-
trum rights to all of the considered channels, and are equipped
with the ability to tune to the same channel at a given time in-
stance using the pre-defined pseudo-random pattern. Jammer
is using narrowband waveforms for creating interference, al-
lowing it to create interference only at a single channel at a
time. Furthermore, it is equipped with spectrum sensing ca-
pabilities [17], which allows it to discover which channel is
currently being used by the transmitter, and consequently to
start creating interference at a given channel.

To mitigate effects of jamming, and increasing Signal
to Interference plus Noise Ratio (SINR) at the receiver to
the level needed for successful decoding, transmitter has the
choice of either changing its transmission frequency (chan-
nel hopping) [18], or transmitting at a higher power (power
alteration).

3. GAME FORMULATION

Analyzing RF jamming and anti-jamming strategies is a com-
plex problem that depends on multiple factors, some of which
are time-varying and channel-dependant. In order to approach
the jamming/anti-jamming problem from a game-theoretical
perspective, a set of assumptions and abstractions has to be
taken, such as: i) the available channels are non-overlapping
and perfectly orthogonal, i.e. jamming one channel has no
effect on the neighboring channels. ii) the available channels
are stationary and frequency-flat. iii) jamming is modelled as
a discrete event, i.e. it either occurs with success or failure
1 iv) all the players in the game maintain their relative posi-
tions as well as antenna orientations (radiation patterns) with
respect to each other.

Following these assumptions, a multi-stage game with
two players is modelled. At the end of every step, each player
receives his immediate payoff for the current step, and takes
a decision regarding his action in the following step. The
decision is two-dimensional, as the player needs to decide on
both his frequency and transmission power in the next step.

The modelled game takes into account reward for the suc-
cessful transmission or jamming, as well as the costs of fre-
quency hopping and the transmission cost. Payoff at the end
of the step s for transmitter T is given as:

PT
s (CT

s , f T
s ,CJ

s , f J
s ) = RT ·α−H ·β −CT

s , (1)

1In real-life communication systems, identifying whether the signal is
successfully jammed is more complex, and typically involves stochastic pro-
cessing. For example, in analog voice communication systems, signal may
be considered jammed if 30% or more of the transmitted voice messages are
incomprehensible at the receiver side. Digital communication systems, on
the other hand, exhibit a threshold effect, where there is a certain SINR be-
low which BER greatly raises and the system performs poorly. Probability
that the achieved SINR at the receiver is below this threshold may then be
considered as measure of the jamming effectiveness.

Here, RT is the reward for successful transmission, H is the
fixed cost of hopping, CT is the transmitter’s current cost of
transmission, f T is the frequency that transmitter is currently
using, α denotes event of successful transmission (2), and
β = 1 if the transmitter decides to hop and β = 0 otherwise.

α =

{
1 if CT

s >CJ
s or f T

s 6= f J
s

0 if CT
s ≤CJ

s and f T
s = f J

s
(2)

Similarly, jammer J’s payoff at the step s is given as:
PJ

s (C
T
s , f T

s ,CJ
s , f J

s ) = RJ · (1−α)−H · γ−CJ
s (3)

RJ is jammer’s reward for successful jamming, CJ
s is jammer’s

cost of transmission in s, and γ = 1 if jammer decides to hop
and 0 if it does not.

In each step transmitter and jammer can deploy 1≤CT
s ≤

TMAX ; 1 ≤CJ
s ≤ JMAX with TMAX ≤ JMAX .

3.1. A naive deterministic game

First, a naive deterministic game is modelled. At the end of
each step s, each player observes the current payoff, transmis-
sion power and transmission frequency. In case that the play-
ers were transmitting at the same frequency, transmitter is also
able to estimate jammer’s transmission power - presumably
calculated from the SINR obtained at the receiver - whereas
jammer is always able to estimate transmitter’s power as well
as transmission frequency using the spectrum sensing mech-
anism. Then, given these observations, each player devises
an action that will maximize their payoff in the next state.
It is easy to show that the problem comes down to a simple
ternary decision. Each case denotes a simplified action set
for the transmitter (4) and jammer (5) as (power, frequency):
keep and stay (KS), restart and change (RC), increase and
stay (IS). The magnitude of the power increase ∆CT is the
minimum increase that the transmitter needs to invest in or-
der to get the SINR at the receiver side over the threshold
that guarantees a successful transmission. Correspondingly,
increase of the power for the jammer relates to the minimum
level of additional invested power required to ensure success-
ful jamming on a given channel.

AT
s+1 =



(KS), if α(s) = 1
(RC), if α(s) = 0 and (H <CT

s +∆CT or
CT

s +∆CT > TMAX )

(IS), if α(s) = 0 and (H ≥CT
s +∆CT and

CT
s +∆CT ≤ TMAX )

(4)

AJ
s+1 =


(KS), if α(s) = 0
(RC), if α(s) = 1 and f T

s 6= f J
s

(IS), if α(s) = 1 and f T
s = f J

s

(5)

However, it is legitimate to expect that the learning mech-
anisms on either (or both) of the sides would allow the players
to take more advanced decisions, thus exploiting the decisions
of the opponent. Illustratory example of gradual evolution of
the game when such an arms race is present is shown in Fig.
1.
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Fig. 1: Illustration of the arms race of the players’ learning
mechanisms.

In time 1, both players are observing whether their action
in the given step brought them positive payoff. If so, they
choose the action (KS) for the following step, otherwise they
keep increasing their transmission powers by ∆CT (transmit-
ter) or ∆CJ (jammer). This is repeated for as long as CT

s+1 <
H and CT

s+1 ≤ TMAX . State of the system is illustrated as T
when transmission is successful and J when jamming is suc-
cessful. Then, at time 2, transmitter decides to switch to an-
other frequency. However, by observing jammer’s behaviour
in time 1, it also realizes that better result would be yielded
by proactively increasing its transmission power by two dis-
crete increments in every step. When cost of transmission has
once more risen above the cost of hopping, it will hop back to
frequency 1 (or any other frequency). In time 3, jammer will
observe this pattern and will decide to increase the probabil-
ity of successful jamming by proactively increasing its trans-
mission power in each step by 3 increments. Intuitively, the
game will eventually evolve towards proactive hopping and
transmitting with maximum power in every step.

3.2. A proposed game based on fictitious play

By observing history of the previously obtained payoffs for
a given action and incorporating these observations into their
decision-making process, players can obtain even better pay-
offs in the future. Fictitious play is an iterative algorithm
where, at every step, each player takes the best response ac-
tion that will optimize its payoff, given that other players
take their actions independently at random according to the
stochastic distribution of their own payoffs. Best response
can pertain to choosing the action either deterministically or
randomly with a certain stochastic distribution, depending on
the adopted decisioning policy.

In each step s, transmitter observes its current state
(CT

s , f T
s ) and its possible actions (CT

s+1, f T
s+1), and compares

the expected payoffs of each action by accessing a vector of
expected payoffs PT . For nT possible discrete values of trans-
mission powers and n f channels in the system, cardinality of
the vector is |PT |= (nT ·n f )

2. As transmitter and jammer are

taking their actions simultaneously, the received payoff PT
s+1

depends on the jammer’s action in the current step. Once that
transmitter receives its payoff, it updates PT according to (6).

PT
s+1(CT

s , f T
s ,CT

s+1, f T
s+1) =

∑
i=nT
i=1 ∑

j=n f
j=1 N(CT

s+1, f T
s+1, i, j)P(CT

s+1, f T
s+1, i, j)

∑
i=nT
i=1 ∑

j=n f
j=1 N(CT

s+1, f T
s+1, i, j)

, (6)

where N(CT , f T ,CJ , f J) denotes the number of times that
the state (CT , f T ,CJ , f J) has occurred during the game and
P(CT , f T ,CJ , f J) is the payoff corresponding to that state.

Similarly, jammer updates its vector of expected payoff
PJ .

State transitions can be depicted by finite-state Markov
chains, where transition probabilities change dynamically, de-
pending on the available up-to-date history and the decision-
ing policy. Two decisioning policies (greedy and stochastic
sampled) are discussed in the following subsections.

3.2.1. Greedy decisioning policy

The most intuitive and straight-forward decisioning policy in-
volves calculating the expected payoffs for all of the possi-
ble actions, and choosing the highest possible value - the so-
called greedy policy [19]. However, such a method may eas-
ily lead the learning algorithm to ”get stuck” in a local opti-
mal solution. An example is given in figure 2, where a player
fairly quickly learns which action is the unique best response
and starts using it. However, once that its opponent catches
up with this strategy and adapts, it will take significant time
for the player’s expected payoff for the given action to drop
below the other values, where in the meantime it will sustain
significant payoff losses.
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Fig. 2: Expected payoff over time for the greedy decisioning
policy.

3.2.2. Stochastic sampled decisioning policy

A better approach may be obtained by using a stochastic sam-
pled policy where, at each step, a randomly sampled action is
taken with a probability p. Sampling is performed by scaling
the expected payoff value of each action to the minimum pos-
sible payoff for the game. For a minimum payoff PMIN and
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n choices with expected payoffs, P1, . . . ,Pn the probability of
choosing an action i is given as follows:

pi =
Pi−PMIN

∑
n
k=1 Pk−PMIN

(7)

4. SIMULATION RESULTS

A game with the following parameters is observed: RT =
RJ = 10; H = 1; TMAX = JMAX = 2; n f = 2. In the algo-
rithm’s learning phase, it is enforced that every system state
has been passed through exactly once. In this way, players’
learning vectors are initialized with the original state payoffs.
Then, the game evolves on its own.

Fig. 3 shows comparison of the overall payoffs for three
games: in all three, transmitter is playing the proposed Game
Theory Optimal (GTO) strategy, whereas jammer is playing
GTO in game 1, taking its decisions in every step randomly in
game 2 (hence, regardless of the observations on the transmit-
ter’s strategy), or always plays a fixed strategy (CJ

s , f J
s )=(2,2)

in game 3 (i.e. it will always transmit at frequency 2 with
power 2, again regardless of the observations). When both
players are playing GTO, any deviation from the strategy
would result in the decrease of the anticipated payoff for the
deviating player.

Tra
nsm

itte
r - 

Game 3

Transmitter - G
ame 2 

Transmitter - Game 1

Jammer - Game 1

Jammer - Game 2

Jammer - Game 3

Fig. 3: Comparison of overall payoffs for varying strategies
of the jammer when transmitter plays GTO

Fig. 4 shows differences in the state transition probabili-
ties for the transmitter for differing game parameters. It can
be seen how an increase in the hopping cost will directly in-
fluence transmitter’s tendency towards hopping - for higher
hopping cost (b), transmitter will be placing more value to-
wards altering its transmission power or staying in the same
state.

5. CONCLUSIONS AND FUTURE WORK

In the paper, we have modelled a Cognitive Radio jamming
game between two players as a MDP. Increased action space
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(a) RT = RJ = 10; H = 1; TMAX = JMAX = 2; n f = 2

(1, 1) 32.69%
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14.12%

(2, 2)
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32.93%
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(b) RT = RJ = 10; H = 8; TMAX = JMAX = 2; n f = 2

Fig. 4: Markov chain state transition probabilities for the
transmitter as the game parameters change.

included having both channel hopping and power alteration as
anti-jamming strategies. Proposed learning algorithm based
on fictitious play and stochastic sampled decisioning policy
allowed for finding the game theory optimal solutions for both
the jammer and the transmitter. Performance of the algorithm
was supported by the simulation results.

Future work will include reducing the action space of the
MDP and - thus - the computational complexity of the algo-
rithm by performing sampling in the learning process [20].
The game will also be extended to arbitrary number of jam-
mers, including the case of cooperative jamming. Further-
more, performance of the adaptation of the proposed scheme
will be tested using the real-life Software Defined Radio plat-
forms [21].
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