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ABSTRACT

Spectral imaging is a fundamental diagnostic technique in
physical sciences with widespread application. Convention-
ally, spectral imaging techniques rely on a scanning process,
which renders them unsuitable for dynamic scenes. Here we
study the problem of estimating the physical parameters of
interest from the measurements of a non-scanning spectral
imager based on a parametric model. This inverse problem,
which can be viewed as a multi-frame deblurring problem,
is formulated as a maximum a posteriori (MAP) estimation
problem. The global optimum of the nonlinear MAP problem
is found using an efficient dynamic programming algorithm.
Lastly, the method is illustrated for an application in solar
spectral imaging. Numerical results suggest that estimation
accuracy is comparable to the conventional slit spectroscopy,
but with the added benefit of a two-dimensional field-of-view.

1. INTRODUCTION

Observing the spectrum of a radiating scene, known as spec-
tral imaging, is a fundamental diagnostic technique in physi-
cal sciences with application in diverse fields such as physics,
chemistry, biology, medicine, astronomy, and remote sens-
ing. The measured spectrum is the main source of informa-
tion about the chemical composition and physical properties
of targeted objects. For example, in astrophysical imaging of
space plasmas, estimates of the plasma parameters (such as
density, temperature, and flow speed of the ions) are inferred
from spectral emission line measurements, hence enabling the
investigation of the complex plasma behavior [1].

Spectral imaging of a two-dimensional scene requires si-
multaneously capturing a three-dimensional data (2-D spa-
tial and 1-D spectral) on an inherently 2-D detector. Con-
ventional techniques rely on a scanning process to build up
this three-dimensional data from a series of two-dimensional
measurements that are acquired sequentially. Spectrometers
with long slits, imagers with multiple spectral filters, Fourier
and Hadamard transform based spectrometers all work with
this principle [2]. As a result, these conventional methods are
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not suitable for dynamic scenes which evolve on time scales
faster than the scanning process involved.

More recently, methods that build up the three-dimensional
data cube from a single-shot measurement have been pro-
posed by using coded apertures [3, 4] and tomographic ap-
proaches [5–9]. In this work, we consider a different instan-
taneous (non-scanning) spectral imaging technique with a
parametric approach [11, 12], which is specifically aimed for
dynamic scenes encountered in space remote sensing. Figure
1 shows the schematic depiction of the system involved. In
contrast to a slit spectrometer, the input to this system is a
two-dimensional image of the scene (from a telescope), and
the output is multiple spectrally dispersed images of the scene
in different diffraction orders.
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Fig. 1: Schematic view of the instantaneous spectral imager
with three diffraction orders 0, +1, and -1 (i.e. three detectors)

In this paper, we study the problem of estimating the
physical parameters of interest from the measurements of this
snapshot spectral imager by using a parametric model for
the measurements. We formulate this inverse problem as a
maximum a posteriori (MAP) estimation problem by incor-
porating the prior knowledge of the physical parameters of
interest. The global optimum of the nonlinear MAP problem
is found using an efficient dynamic programming algorithm,
which is an extension of a previously proposed algorithm for
maximum likelihood parameter estimation of superimposed
signals [13, 14]. Lastly, we illustrate the performance of the
algorithm for an application in solar spectral imaging.

Our previous work had focused on performing a Cramer-
Rao bound analysis [11, 12] demonstrating that the estima-
tion accuracy can be comparable to the conventional slit spec-
troscopy, while enabling a two-dimensional FOV at the same
time. The inversion results of this paper validate this finding.
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2. FORWARD PROBLEM

Dispersed images can be modeled parametrically in astro-
physical imaging of space plasmas [10–12]. In this paramet-
ric model, each spatial pixel m in the scene produce a dis-
persed spectral line that has a Gaussian shape, and is charac-
terized by three parameters of interest: integrated line inten-
sity fm, line width ∆m, and line center shift (Doppler shift)
εm. In the dispersed image, the spectral lines from all pixels
are superimposed. Considering a row of pixels of length M ,
this superposition can be mathematically expressed as

yam =

M∑
m′=1

fm′φ
a(m−m′; Θm′), (1)

φa(m−m′; Θm′) =

 1√
2π|a|∆m′

e
−

(m−m′−a ε
m′ )

2

2a2∆2
m′ if a 6= 0,

δ(m−m′) if a = 0,

where yam is the intensity of the ath-order dispersed image at
pixel m, superimposed signal φa(m − m′; Θm′) with a 6=
0 is a unit Gaussian line profile arising from pixel m′, and
Θm′ = [εm′ , ∆m′ ]

T . Line widths ∆m′ and center shifts εm′
are measured in pixel units, and in the first diffraction order
(a = +1). For higher orders, these are scaled by the spectral
order a.

Let us define the vectors ya = [ya1 . . . y
a
M ]T , f =

[f1 . . . fM ]T , ε = [ε1 . . . εM ]T , and ∆ = [∆1 . . .∆M ]T .
Based on this model, each dispersed image ya can be viewed
as a blurred version of the same object f with a different
spatially-varying (Gaussian) filter of some unknown parame-
ters ε and ∆ [11,12]. Also when the order is zero, there is no
dispersion and hence no blur on the image, i.e. y0 = f .

For any order a, the complete observation model with
noise is given, in vector-matrix form, by

ỹa = Ha(Θ) f + na, (2)

where Ha(Θ) = [ha(1; Θ1) . . .ha(M ; ΘM )] with Θ =
[Θ1 . . .ΘM ] and ha(m′; Θm′) = [φa(1−m′; Θm′) . . . φ

a(M−
m′; Θm′)]

T , and na = [na1 . . . n
a
M ]T is the noise vector with

each nam ∼ N(0, σ2) and uncorrelated across both m and a.
Let A = {a1, a2, . . . , aN} be the set of all diffraction

orders that are measured. Then by stacking all measured dis-
persed images into a single vector, ỹ, the model becomes

ỹ = H(Θ)f + n, (3)

ỹ =


ỹa1

ỹa2

...
ỹaN

 , H(Θ) =


Ha1(Θ)
Ha2(Θ)

...
HaN (Θ)

 , n =


na1

na2

...
naN

 .

3. INVERSE PROBLEM

In the inverse problem, the goal is to estimate the unknown
spectral line parameters f and Θ from the measurements ỹ.

We formulate this inverse problem as a MAP estimation prob-
lem that incorporates prior knowledge of the statistics of the
spectral line parameters. (Such statistics can be obtained from
the measurements of existing slit spectrometers.) Treating f ,
∆, and ε as independent random vectors, the MAP estimates
of f , ∆, and ε from the measurements ỹ are given by

arg max
f ,∆,ε

p(ỹ | f ,∆, ε) p(f)p(∆)p(ε) (4)

where p(ỹ | f ,∆, ε) represents the conditional probability
density function (pdf) of ỹ given f , ∆, and ε, and p(f), p(∆),
and p(ε) denote the prior distributions.

Note that the zeroth order image, ỹ0, is a noisy observa-
tion of f , and hence if it is observed at a sufficiently high SNR,
then the effect of a broader prior of f will be almost negligible.
For this reason, we remove p(f) from the above MAP formu-
lation, which yields to a simpler form of a separable nonlinear
least squares problem [15]. For the priors p(∆) and p(ε), we
assume that parameters at different pixels are independently
distributed. Lastly, the conditional pdf p(ỹ | f ,∆, ε) comes
from the noisy observation model in (3). After combining all
of these together, and taking the logarithm of (4), the MAP
estimation problem becomes

min
f ,∆,ε

1

2σ2
||ỹ −H(Θ)f ||22 +

M∑
m=1

r(Θm), (5)

where r(Θm) = − log p(∆m) − log p(εm) is the regulariza-
tion functional arising from priors.

4. DYNAMIC PROGRAMMING ALGORITHM

We use an efficient dynamic programming algorithm to find
the global optimum of the nonconvex MAP problem. This
algorithm is an extension of a robust dynamic programming
algorithm that was previously proposed for maximum likeli-
hood parameter estimation of superimposed signals [13, 14].

This algorithm performs an efficient search (equivalent to
exhaustive search) by exploiting the special structure of the
problem, which is the interaction of superimposed signals (i.e.
Gaussian line profiles) with only few of their closest neigh-
bors. Let r ≥ 1 be the number of closest neighbors that each
superimposed signal interacts on both sides. Then mathemat-
ically, this local interaction model [13] is expressed as

hi(Θi)
∗
hj(Θj) ≈ 0 for |i− j| > r, (6)

implying that the ith and jth columns of H(Θ), related to ith
and jth superimposed signals, are approximately orthogonal
if they are separated by more than r columns.

Here we revisit the algorithm [13] and its derivation for
a more general setting that involves priors and superimposed
signals with interaction r > 1. When the model in (6) holds,
the least squares term in the MAP functional can be approxi-
mated as
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‖ỹ −H(Θ)f‖2 (7)
≈‖ỹ −H(Θ[k+1:k+r])f[k+1:k+r] −H(Θ[1:k])f[1:k]‖2

+‖ỹ −H(Θ[k+1:k+r])f[k+1:k+r] −H(Θ[k+r+1:M ])f[k+r+1:M ]‖2

−‖ỹ −H(Θ[k+1:k+r])f[k+1:k+r]‖2

where Θ[i:j] denotes [Θi Θi+1 . . . Θj ] and likewise f[i:j].
Then the MAP functional has the generic functional form of

g(x[1:M ]) = g1(x[1:k],x[k+1:k+r])+g2(x[k+1:k+r],x[k+r+1:M ])
(8)

with xi = (Θi, fi), where the function g1(.) contains the first
term of (7), and g2(.) contains the last two terms of (7), in
addition to the prior terms.

This form enables to efficiently find the global mini-
mum of (7) via dynamic programming [16–18]. This is
because given x[k+1:M ], the optimal values of x1, . . . ,xk
are a function of only x[k+1:k+r], hence can be denoted as
x∗[1:k](x[k+1:k+r]). Then the principle of conditional opti-
mization [18] allows to efficiently solve the high-dimensional
problem by solving smaller subproblems that are related to
each other recursively. More specifically, if we define the
kth subproblem as finding x∗[1:k](x[k+1:k+r]), then it can be
solved by using the solution of the (k − 1)th subproblem:

x∗[1:k](x[k+1:k+r]) = arg min
xk

x[1:k−1]∈x∗[1:k−1](x[k:k+r−1])

g1(x[1:k],x[k+1:k+r])

(9)
which performs a search in a reduced set.

Each subproblem can also be simplified. Minimization
over Θ[1:k] can be solved separately by eliminating f[1:k] from
(9) based on the variable projection technique [15]. Then the
kth subproblem becomes

min
Θ[1:k]

‖P⊥H(Θ[1:k])
[ỹ−H(Θ[k+1:k+r])f[k+1:k+r]]‖2+

k∑
m=1

r(Θm)

(10)
where P⊥A = I−A(A∗A)−1A∗ is the projection matrix onto
the orthogonal complement of the column space of A.

The steps of the algorithm is summarized below. Here
ΛM and ΠM denote the constraint sets for Θ and f , respec-
tively, which define the feasible region for the search. More-
over, Ω denotes Λ×Π. All minimization problems are solved
through exhaustive search over the quantized constraint sets.

1. Initialization (k = 1):

(a) For each (Θ[2:1+r], f[2:1+r]) ∈ Ωr, solve

Θ̂[1:1](Θ[2:1+r], f[2:1+r]) = arg min
Θ1∈Λ

‖P⊥H(Θ[1:1])
[ỹ −H(Θ[2:1+r])f[2:1+r]]‖2 + r(Θ1)

(b) Record the optimal values as a function of Θ[2:1+r]:

Θ∗[1:1](Θ[2:1+r]) = {Θ[1:1] ∈ Λ : Θ[1:1] =

Θ̂[1:1](Θ[2:1+r], f[2:1+r]) for some f[2:1+r] ∈ Πr}

2. Updating (k = 2, . . . ,M − r):

(a) For each (Θ[k+1:k+r], f[k+1:k+r]) ∈ Ωr, solve

Θ̂[1:k](Θ[k+1:k+r], f[k+1:k+r]) = arg min
Θk∈Λ

Θ[1:k−1]∈Θ∗[1:k−1](Θ[k:k+r−1])

‖P⊥H(Θ[1:k])
[ỹ −H(Θ[k+1:k+r])f[k+1:k+r]‖2 +

k∑
m=1

r(Θm)

(b) Record the optimal values as a function of Θ[k+1:k+r]:

Θ∗[1:k](Θ[k+1:k+r]) = {Θ[1:k] ∈ Λk : Θ[1:k] =

Θ̂[1:k](Θ[k+1:k+r], f[k+1:k+r]) for some f[k+1:k+r] ∈ Πr}

3. Final step:

(a) Estimates of Θ and f are given by

Θ̂ = arg min
Θ[M−r+1:M]∈Λr

Θ[1:M−r]∈Θ∗[1:M−r](Θ[M−r+1:M])

‖P⊥H(Θ[1:M])
ỹ‖2 +

M∑
m=1

r(Θm)

f̂ = [H∗(Θ̂)H(Θ̂)]−1H∗(Θ̂)ỹ

We now revisit the computational requirements of the ex-
tended algorithm. Let q be the number of quantization levels
used in exhaustive search for each scalar parameter, and n and
p be the number of scalar parameters in each Θm and fm, re-
spectively. (In our problem, p = 1 and n = 2.) Then it can be
easily found that the total number of objective function eval-
uations is of O(qr(2p+n)+n). Hence the computational cost
is exponential only in the number of interacting signals, r, as
opposed to the exponential cost in M in exhaustive search.

5. SAMPLE APPLICATION

We now illustrate the effectiveness of the spectral imaging
technique and MAP estimation algorithm for an application
in solar spectral imaging [1]. For this, we consider a strong
extreme ultraviolet (EUV) solar emission line, with a central
wavelength of λ0 = 195.12 Å.

5.1. Implementation choices for the algorithm

To implement the dynamic programming algorithm, we need
to specify the prior distributions, the number of interacting
signals, r, the constraint sets for the parameters Θ and f , and
how to quantize these constraint sets for the numerical search.

We model the line widths and Doppler shifts as indepen-
dent and identically distributed random variables over pix-
els. Their prior distributions are estimated from observations
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Fig. 2: Histograms of line widths and Doppler velocities, and
fitted distributions for the solar spectral line Fe XII 195.12 Å.

of Hinode satellite’s EUV imaging spectrometer (EIS) [19],
which is a slit spectrometer. Figure 2 shows the obtained his-
tograms and fitted Gaussian distributions (shown in red). The
fitted distributions are also scaled to convert the parameters
in physical units to pixel units [12] by scaling them with the
operating dispersion scale (the wavelength range covered by
a single pixel).

Noting that the prior distributions of line widths and
Doppler shifts are Gaussian, we constrain each parameter to
within three standard deviations (std) from its mean. Sim-
ilarly, noting that ỹ0

m is a noisy observation of fm and has
Gaussian distribution, we define bounds for fm as three noise
std from ỹ0

m. To quantize this constrained parameter space
for exhaustive search, one option is uniform quantization [13]
where the number of quantization levels chosen based on the
Cramer-Rao error bounds of the parameters [12]. Instead,
we choose a nonuniform quantization grid that takes into
account the Gaussian distribution of the parameters. A grid
is assigned to each region of equal probability, yielding to a
denser grid around the mean.

Lastly for the choice of r, we require that

hi(Θi)
∗
hj(Θj)

‖hi(Θi)‖2‖hj(Θj)‖2
< 10−3 for |i− j| > r. (11)

We choose the smallest integer value of r that makes this ar-
gument true for all possible ∆i, εi, ∆j , and εj .

5.2. Numerical results

Measurements of the instantaneous spectral imager are sim-
ulated based on the parametric model in (2). For this, spec-
tral line parameters are randomly generated according to their
modeled prior distributions. The dynamic programming algo-
rithm is used to estimate the spectral line parameters from the
simulated measurements. A gradient-based interior-point al-
gorithm (a local optimization method) is used afterwards in
order to refine the resulting estimates (limited by the finite
grid size).

Fig. 3 shows a typical result with {0,+1,−1} orders, and
at a dispersion scale, D, of 50 mÅ/pixel. The estimated pa-
rameters yield estimated observations that are almost same as
the given observations. With only three orders, root-mean-
square (rms) errors are typically less than 2 for intensities, 1
mÅ for line widths, and 1.5 km/s for Doppler shifts. This
estimation accuracy is similar to the accuracy of the state-of-
the-art slit spectroscopy used for this application [19], which
only have a 1D FOV. Measuring more than three orders helps
further to reduce these errors.

Fig. 4 shows the results of 50 Monte Carlo runs at various
noise levels, with D = 50 mÅ/pixel and M = 10. When
the noise std is smaller than 4 (corresponding to an SNR of
∼ 50), the estimation accuracy is comparable to the slit spec-
troscopy. To achieve similar accuracy for lower SNR cases,
more spectral orders (than three) are needed.

To conclude, this new generation of spectral imagers of-
fers the ability to infer spectral line parameters over an in-
stantaneous two-dimensional FOV and with good estimation
accuracy for a wide range of SNR. This is particularly useful
for studying dynamic phenomena in targeted scenes.
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Fig. 3: Estimates of intensities, widths, and Doppler shifts (orders {0,+1,−1}, D = 50 mÅ/pixel, M = 50, r = 2, σ = 2).
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