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Abstract—The compressive sensing paradigm holds promise
for more cost-effective imaging outside of the visible range,
particularly in infrared wavelengths. However, the process of
reconstructing compressively sensed images remains computa-
tionally expensive. The proof-of-concept tracker described here
uses a particle filter with a likelihood update based on a
“smashed filter” which estimates correlation directly, avoiding
the reconstruction step. This approach leads to increased noise
in correlation estimates, but by implementing the track-before-
detect concept in the particle filter, tracker convergence may still
be achieved with reasonable sensing rates. The tracker has been
successfully tested on sequences of moving cars in the PETS2000
dataset.

I. INTRODUCTION

If commercialized, compressive sensing (CS) infrared cam-
eras could dramatically lower the cost of sensors in a wide
variety of applications. However, the output of any compres-
sive sensor must be processed, or reconstructed, before it is
readable by a human operator. In the case of compressively
sensed video, real-time reconstruction is extremely compu-
tationally costly. If automated systems are developed which
perform their tasks without reconstructing data, this problem
may be avoided.

A proof-of-concept automated tracking system for surveil-
lance applications is presented in this paper. A particle fil-
ter based implementation of the track-before-detect sensing
paradigm is used to estimate target location. The likelihood
calculation step of the particle filter is handled by an imple-
mentation of the smashed filter [1], described in Section II-B.

This work focuses on automated surveillance applications
of CS cameras, a constrained problem with desirable prop-
erties for a first attempt at a direct CS processing system.
Most notably, many surveillance cameras are stationary. Many
surveillance cameras also have a wide field of view and are
intended to detect targets which are small relative to the total
image. These characteristics may be exploited to simplify the
tracking problem, for instance by allowing fast and simple
background subtraction.

The tracker was evaluated using Monte Carlo trials on a
short video sequence from the PETS2000 dataset. On this
sequence, the tracker was able to converge to the correct target
location at a sensing rate of 0.3, a level comparable to that
required to generate high quality image reconstructions.

The paper is organized as follows: Section I-B describes
existing work related to compressive sensing, target tracking,
and detection. Section II gives an overview of the tracking
algorithm, including the particle filter motion model and the
smashed filter based likelihood function. In Section III, the test
procedures and results used to verify operation of the tracker
are described. Finally, Section IV discusses the implications
of the simulation results and suggests directions for further
research.

A. Overview of compressive sensing

The problem of compressive sensing and reconstruction in
image and video applications is described here. In a typical
compressive sensing implementation, a vectorized video frame
x is known to be sparse in some basis with inverse transform
operator B, e.g. a wavelet basis in the case of natural images.
Each image is compressively sensed by multiplying with a
measurement matrix M:

y = Mx = MBθ (1)

where θ is a k-sparse vector in the transformed (e.g. wavelet)
domain.

In a typical compressive sensing camera, the measurement
step is accomplished by reflecting light off a digital micromir-
ror device (DMD) on which a series of pseudorandom masks
are displayed [2]. (1) is an underdetermined system; that is,
M is a fat matrix and the compressively sensed vector y has
fewer elements than the original image x. However, it is well-
known that θ can be recovered with high probability from y
by solving the convex optimization problem

minimize
θ

‖MBθ − y‖2 + τ ‖θ‖1 . (2)

B. Previous Work

Several solvers exist for equations of the form in (2),
including GPSR [3], and SPG-l1 [4], [5]. Other solvers [6],
[7] work to approximately solve a non-convex `0 minimization
form of the problem.

In [8]–[12] video reconstruction is improved by incorporat-
ing temporal information between frames in the reconstruction
problem. [8], [12], and [9] give methods for incorporating
optical flow into video reconstruction. In [11], a low rank
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background with small moving targets is assumed, allowing
a dramatic improvement in reconstruction quality. The back-
ground subtraction approach of [10], in which quasi-static
background with small targets is assumed, is implicitly used
in this work.

Although extensive work has been performed in compres-
sive sensing reconstruction, very little work exists in directly
processing compressively sensed data. Davenport [1], [13]
describes a method of performing classification directly in the
compressed domain and coins the term “smashed filter” to
describe it. This method is used here to perform the likelihood
estimation step of a particle filter. In addition, we show in
Section II-B that the smashed filter output, when used to
estimate cross-correlations, can be calculated efficiently using
the FFT.

The track-before-detect paradigm used herein is also ex-
tensively researched. Particle filter implementations have been
published [14], [15]; the work of [14] is adapted here for use
in the direct CS tracker.

II. TRACKING ALGORITHM

This section describes the algorithm used to perform vehicle
tracking in the proof-of-concept imlementation. A particle
filter with a simple constant motion model was used, with
likelihood estimate given by a simple MACH filter imple-
mented directly in the compressive domain using the smashed
filter paradigm of [1]. Because the smashed filter suffers
from dramatically reduced SNR relative to its non-compressive
equivalent, a track-before-detect approach was used to improve
tracker convergence. This was implemented through a particle
filter using the approach described in [14].

A. Track-Before-Detect Using Particle Filter

The tracker was developed using the work in [14], which
gives an example of a particle filter for implementation of
track-before-detect. The state vector for the particles was
chosen to be position and velocity in the image plane, with
the addition of a binary “alive” state for track-before-detect:

x[n] = [px[n] py[n] vx[n] vy[n] a[n]]
T
. (3)

a[n], the “alive” state variable, takes on a value of 1 if
the target is estimated to be present by that particle, and 0
otherwise.

Particle state updates of position are given by a constant
motion model with added Gaussian noise. The “alive” state of
the filter is updated with a λ = 0.05 probability of switching
states between 0 (dead) to 1 (alive).

As with all particle filters, the implementation discussed
above requires a likelihood estimate for the importance sam-
pling step of the filter. Dead (a[n] = 0) particles may be
assigned a constant likelihood based on the probability of
a target’s presence, while alive (a[n] = 1) particles require
some estimate of target probability. This step is particularly
important and difficult for the case of a compressive sensing
tracker, since only the compressed vector y is available as

input to the likelihood function. The compressive matched
filter, discussed below, was used for this purpose.

B. The Fast Smashed Filter

The smashed filter [1] is a method of performing distance-
based classification directly in the compressed domain, without
performing `1 reconstruction. A small modification allows
the smashed filter to be employed as an estimator of cross-
correlation, analogous to the matched filter [13]. This special
case of the smashed filter is able to be quickly computed using
the FFT, just as with conventional cross-correlation.

The compressive matched filter adapts the well-known
matched filter to the case where only a compressively sensed
vector y is available for classification. A template hu,v corre-
sponding to a target at location (u, v) is measured with sensing
matrix M, generating output y. In this case, the log likelihood
of receiving y given the transmission of hu,v in Gaussian noise
is a function of the test statistic [13]

t = yT (MMT )−1Mhu,v = yTM†Thu,v. (4)

This is typically interpreted as projecting the shifted tem-
plate hu,v into the compressive domain by multiplying with
M†T . However, by defining x̂ = M†y, the minimum norm
solution of the underdetermined problem y = Mx, (4) may
be stated as a simple inner product:

t = x̂Thu,v. (5)

Since each hu,v is a shifted version of the target template, this
is a cross-correlation. Like all cross-correlations, this value
may be efficiently computed using the FFT.

III. ALGORITHM PERFORMANCE SIMULATIONS

The tracking algorithm described in section II was tested on
the PETS2000 dataset [16], which contains several sequences
of cars moving against a static background. This is a relatively
easy dataset by the standards of modern computer vision.
However, our purpose is only to show the feasibility of target
tracking without frame reconstruction, so this is an ideal start-
ing point. This section describes the simulations performed to
evaluate the algorithm and summarizes the results of testing.

A. Simulation Set-up

The test used resized and cropped frames from the
PETS2000 dataset. Frames 2700-2910 were chosen; in this
series, a parked car backs out of its parking space, stops
briefly, and reverses direction, driving forward out of the
frame. Frames were processed by first resizing the image with
a scale factor of 0.5, then cropping the result to a size of
128×128 pixels. Fig. 1 shows an example of a frame from this
sequence. A compressive sensing camera was simulated by
multiplication of an image vector with a measurement matrix
M consisting of pseudorandom i.i.d. Gaussian elements. A
template was then generated for this target based on image-
domain difference frames taken from the testing dataset. Fig-
ure 3 shows the image-domain representation of the generated
filter.
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Fig. 1. Example frame from testing video sequence.

Fig. 2. Example difference frame from testing video sequence.

Fig. 3. image domain template for cross-correlation.

Fig. 4. Correlation estimate using smashed filter. Note that no correlation
peak is clearly visible, leading to the use of the track-before-detect particle
filter.

1) Template Creation: Because the goal of this research
was to determine the feasibility of tracking directly in the CS
domain, restrictions on the use training vs. testing data were
relaxed. The target template was generated using examples
from throughout the video sequence of interest, rather than
restricting training data to the beginning of the sequence. This
enabled a highly specific template for cross-correlation to be
quickly developed. By eliminating problems of template gen-
eration, overfitting, etc. in this way, the effect of compressive
sensing on detector performance may be studied more or less
in isolation.

The template was generated using difference frames from
the test video sequence. In the case of a stationary surveillance
camera, this quickly eliminates any motionless background
objects from the video. Unfortunately, a target which is still
or temporarily stopped will also be undetectable. This is
a problem which must be overcome if a system is to be
commercialized.

The template was generated using a maximum average
correlation height (MACH) filter. Positive (target) examples
were selected from the test video sequence difference frames
as described above, while negative (non-target) examples for
filter training were selected from segments of the source video
where no targets were present. Figure 3 shows the generated
template; it can be seen that the difference image based
template acts similarly to an edge detector.

B. Results

The particle filter successfully converged on the target in the
test sequence at a sensing rate of 0.3 (4915 sensors). Figure
5 summarizes the results of the Monte Carlo trials at each
sensing rate. Figure 4 shows the output of the smashed filter
for one frame of the test sequence. No clear peak is visible in
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Fig. 5. Simulation Results.

the correlation estimate, but the tracker is able to converge
successfully despite this by implementing the track-before-
detect concept.

IV. CONCLUSION

The automated tracker described above is adequate as a
proof of concept showing the feasibility of performing tracking
without reconstruction of compressively sensed images. As
expected, performance is slightly reduced relative to tracking
in the image domain. However, tracker convergence was
achieved at a sensing rate of 0.3. This is comparable to sensing
rates used in other work on compressive sensing image and
video.

Several challenges must be overcome before direct tracking
becomes commercially feasible. Most importantly, more so-
phisticated likelihood estimates will be necessary. The authors
intend to explore the possibility of adapting common feature
extraction methods such as the histogram of oriented gradients
(HoG) [17] or the Haar-like features of Viola & Jones [18].
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