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ABSTRACT
Recently, the separability assumption turns the nonnegative
matrix factorization (NMF) into a tractable problem. The as-
sumption coincides with the pixel purity assumption and pro-
vides new insights for the hyperspectral unmixing problem.
In this paper, we present a quasi-greedy algorithm for solving
the problem by employing a back-tracking strategy. Unlike
the current greedy methods, the proposed method can refresh
the endmember index set in every iteration. Therefore, our
method has two important characteristics: (i) low computa-
tional complexity comparable to state-of-the-art greedy meth-
ods but (ii) empirically enhanced robustness against noise. Fi-
nally, computer simulations on synthetic hyperspectral data
demonstrate the effectiveness of the proposed method.

Index Terms— nonnegative matrix factorization, sub-
space pursuit, hyperspectral unmixing, endmember detection

1. INTRODUCTION

Due to the low spatial resolution of imaging sensors, spectral
unmixing [1, 2], which consists of pure endmember extraction
and the abundance estimation, is a major issue in hyperspec-
tral imagery. To deal with this problem, the most widely used
model is the linear mixture model (LMM) that every mixed
pixel is an additive linear combination of the pure endmem-
bers. Based on the LMM, it is natural to consider formulating
the problem as a NMF problem that simultaneously factorizes
the data into two parts: the endmember and the abundance
matrices [3]. However, the NMF problem is notoriously dif-
ficult to solve and the solution is not unique [4].Recently,
promising alternative theories have been developed based on
the separability assumption on the data which guarantees the
problem to be solved within polynomial time [5, 6]. Geomet-
rically, the separability assumption states the following: all
columns of the data lies in the convex hull of some represen-
tative columns within the data itself. It is essentially the pure
pixel assumption in the hyperspectral unmixing, that each ma-
terial has at least one pure pixel in the data [1].
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In the literature, various methods have been developed for
the separable NMF problem [3]. Boardman [7] proposed the
pixel purity index via random projections. Winter [8] and
Chan et al. [9] looked into the problem from the perspective
of convex geometry and proposed simplex volume maximiza-
tion algorithms such as N-FINDR [8]. Various greedy meth-
ods, e.g., vertex component analysis (VCA) [10], successive
projection algorithm (SPA) [11, 12] and extreme ray (XRAY)
[13], have been proposed and studied. Quite recently, Esser et
al. [14] and Elhamifar et al. [15] formulated the problem as an
joint sparse recovery (i.e., l1,p-norm minimization) problem
and solved it by convex optimization techniques; Iordache et
al. [16] applied a similar method for the spectral unmixing.

In this paper, we propose a novel quasi-greedy method,
named subspace vertex pursuit (SVP), to solve the separable
NMF problem. It employs a back-tracking strategy similar to
the subspace pursuit (SP) [17, 18]. In every iteration, if we
assume that the number of materials r is known, SVP first
identifies r candidate points in the current convex hull and
then merges them with the r candidate points from the pre-
vious step, forming a new set of 2r candidate points; second,
SVP selects r points out of the 2r candidate set by solving a
joint sparse optimization sub-problem. Unlike state-of-the-art
greedy methods, SVP could freely remove a candidate point,
which was considered to be reliable in previous iterations but
shown to be wrong in the current iteration, from the candidate
dataset. Therefore, SVP shows more robust performances
in comparison with current greedy methods for the separa-
ble NMF problem. On the other hand, compared with the
joint sparse minimization method [14, 15] with O(N2) vari-
ables to be optimized (N is the size of the dataset), as SVP
solves an optimization sub-problem of much smaller scale
and converges in only a few iterations, the overall compu-
tational complexity of SVP is much smaller.

2. PROBLEM STATEMENT AND ASSUMPTIONS

2.1. Linear Mixture Model and the NMF problem

Suppose that Y = [y1,y2, · · · ,yN ] ∈ RL×N+ is a hyper-
spectral data cube, where L is the data dimension and N
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is the number of data samples. If we assume that F =
[f1, f2, · · · , fr] ∈ RL×r is the pure endmember matrix and
W = [w1,w2, · · · ,wr] ∈ Rr×N is the associated abun-
dance matrix, where r is the number of materials. Then the
data Y can be represented by the following model

Y = FW + N (1)

where N ∈ RL×N is a Gaussian white noise matrix. To be
physically meaningful, the matrix W should also satisfy

W1Tr = 1N ,W � 0 (2)

where 1r ∈ Rr and 1N ∈ RN with all entries equaling to uni-
tary. Based on the LMM, we can formulate the endmember
extraction problem as

{F̂,Ŵ} = arg min
P,Q
||Y −PQ||2F ,

s.t. P � 0,Q � 0, QT1r = 1N (3)

This is an NMF problem with the sum-to-one constraint,
which is a highly ill-posed, NP-hard problem and does not
have a unique solution [4].

2.2. Separable Assumption for NMF

Recently, Donoho et al. [5] and Arora et al. [6] have provided
a sufficient condition which guarantees the NMF problem to
have unique solutions and could be solved within polynomial
time. Their condition could be stated as follows.

Definition 1 (Simplicial Vectors) A set of vectors {f1, · · · ,
fr} ∈ RL is simplicial if no vector fi lies in the convex hull of
{fj : j 6= i}.

Definition 2 (Separable NMF) We call Y = FW a separa-
ble NMF if the columns of F are simplicial and there exists a
column permutation matrix Π, such that

WΠ =
[

Ir U
]

(4)

where Ir is a rank r identity matrix, Π is a column permuta-
tion operator and U ∈ Rr×(N−r)

+ . Furthermore, the factor-
ization is called near-separable, if Y = FW + N where N
is a white Gaussian noise matrix.

2.3. Key Observations for the problem

Based on the LMM and separable assumption for the data, we
have the following observations for the problem.

Proposition 1 (Convex Geometry) If the data Y are sepa-
rable and satisfy the LMM assumption, then all the columns
of Y lie in the convex hull

H = {y ∈ RL| y = Fw, w � 0,1Tr w = 1} (5)

which is generated by the columns of F, where F is a subma-
trix of Y and each column of F is a vertex ofH.

Proposition 2 (Row Sparsity Property [15, 19]) If the data
Y are separable and satisfy the LMM assumption, then we
have

Y = YX, where X = Π

[
Ir U
0 0

]
ΠT (6)

where Π is a column permutation matrix, X ∈ RN×N and
U ∈ Rr×(N−r)

+ satisfying UT1r = 1N−r. Furthermore, if
Ŷ = Y + N is near-separable, we have

Ŷ = ŶX + N̂ (7)

where N̂ = N(IN −X) is still zero-mean Gaussian.

From Proposition 1, we can see that the separable NMF prob-
lem reduces to finding the vertices of a convex hull; from
Proposition 2, as generally r << N , the problem is equiv-
alent to a multiple measurement vector (MMV) problem [20]
that tries to recover a row sparse matrix X. Therefore, it is
natural to consider the following problem

min
X
||X||row−0, s.t. X ∈ Φ(C) (8)

where || · ||row−0 denotes the number of nonzero rows and
Φ(C) = {Y = YC, C ≥ 0, CT1N = 1N} is the feasible
set. The problem in (8) is NP-hard in general, Esser et al.
[14] and Elhamifar et al. [15] proposed to solve the following
convex relaxed problem

min
X
||X||1,p, s.t. X ∈ Φ(C) (9)

where ||X||1,p =
∑N
i=1 ||xi||p for some p ≥ 1.

However, the problem (9) has O(N2) variables to opti-
mize which is impractical for large-scale dataset. Therefore,
greedy methods such as the simultaneous orthogonal match-
ing pursuit (SOMP) [20] are interesting alternatives for solv-
ing the problem [21]. Nonetheless, because SOMP sequen-
tially detects the nonzero rows and cannot remove the rows
that were considered to be reliable in the previous step but
found to be wrong in the current iteration, it is not robust to
noise. Therefore, it encourages us to consider the simultane-
ous SP method [17, 18, 22] for the separable NMF problem
by incorporating a back-tracking strategy.

3. SUBSPACE VERTEX PURSUIT

In each iteration, the SVP method maintains a set of r columns
of Y, performs a simple test in the current convex hull, and
then refines the subset. If the data Y does not lie in the cur-
rent estimation for the correct convex hull, one refines the
estimate by only retaining the reliable candidates, discarding
the unreliable ones while adding the same number of more
reliable new candidates. The expectation is that the recur-
sive refinements of the estimate will consecutively lead to
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subspaces with strictly decreasing distance from the data Y.
By this scheme, we can refresh the candidate pixels found
unreliable in the current iteration. Specifically, every itera-
tion of SVP consists of 3 steps: (i) detection step, that finds
r new candidate vertices simultaneously and (ii) refinement
step, that select r most reliable candidate out of 2r index set
and (iii) projection step, that projects the data onto the current
convex hull. Next, we describe each step in detail.

3.1. Detection Step

In the kth iteration, based on the r indices in the (k − 1)th
step, we have to find r new indices simultaneously that are
supposed to contain as many vertex candidates as possible.
Similar to SOMP, we consider the correlation matrix C(k) =
(R(k−1))TY and pick r indices corresponding to the r largest
values of ||(C(k))i||2 (1 ≤ i ≤ N), where the matrix R(k−1)

is the residual matrix calculated in the previous projection
step that will be described below. In the noiseless case, such
a strategy is guaranteed to find at least one vertex in each iter-
ation. In the noisy case, as the candidate is selected based on
the correlations of all data vectors, it is robust to noise.

3.2. Refinement Step

For the kth step, suppose we have a merged 2r index set Î(k),
we need to find r most reliable candidates as the set I(k) from
the 2r set Î(k). In the SP method for sparse recovery, they
solve a least squares problem as follows

X0 = arg min
B
||Y −YÎ(k)B||2F (10)

The indices in Î(k) which produces r largest values of
||Xi

0|| (i ∈ Î(k)) are selected as new candidates. How-
ever, in our case, such a strategy does not guarantee that the
selected candidates are more reliable. As the vertices are the
most representative points in the data, based on Proposition 1
and 2, we consider solving the following sub-problem instead

min
X1

1

2
||YÎ(k) −YÎ(k)X1||2F + λ||X1||1,2,

s.t. X1 � 0, XT
1 12r − 1N = 0,

(11)

where λ > 0 is a regularization parameter. This sub-problem
can be efficiently solved by the alternating direction method
of multipliers [23]. Because we impose l1,2 penalty on the
representation matrix X1 ∈ R2r×2r, X1 is supposed to be
row sparse. The set of points corresponding to the nonzero
rows of X1 are the smallest number of points to form a convex
hull for the rest of the data, they are more reliable candidates
to be vertices. Therefore, we pick r indices in Î(k) corre-
sponding to the largest r rows of X1 to form the new index
set I(k). Compared with the joint sparse optimization prob-
lem (9) with O(N2) variables, the sub-problem (11) has only
O(r2) variables to be optimized. Given r << N , the scale

of the problem (11) is much smaller than (9) and the compu-
tational complexity will not change as the sample number N
varies.

3.3. Projection Step

In the projection step, given the new candidate set I(k) from
the refinement step, all the data are projected to the convex
hull generated by the candidates YI(k) to get the residual. The
projection and residual can be computed by solving the non-
negative least squares problem

H = Proj(Y,YI(k)) = arg min
B�0
||Y −YI(k)B||2F ,

R(k) = Resid(Y,YI(k)) = Y −YI(k)H,
(12)

where the matrix H in the problem (12) can be solved ex-
actly using block coordinate descent method as in [13].
Here we cheaply approximate the solution by projecting
the least squares solution back to the nonnegative orthant
H = max{(YT

I(k)YI(k))−1YI(k)Y,0} .

Algorithm 1 Subspace Vertex Pursuit for Spectral Unmixing
Input: Data matrix Y, number of endmembers r;
Output: The matrices F, W;

1: Initialize: k = 1, C(0) = YTY, the residual R(0) =
Resid(Y,YI(0)), where I(0) is the index set

I(0) = {r indices correspond to the r largest values of
||(C(0))i||2 (1 ≤ i ≤ N)}

2: while not converged do
3: Detection Step: Update C(k) = (R(k−1))TY and

Î(k) = I(k−1)
⋃
{r indices correspond to the r

largest values of ||(C(k))i||p (1 ≤ i ≤ N)},

4: Refinement Step: Update the index set

I(k) = {r most reliable indices in the index set Î(k)}

5: Projection Step: Update R(k) = Resid(Y,YI(k));
6: If ||R(k)||F > ||R(k−1)||F , I(k) = I(k−1);
7: k = k + 1,
8: end while
9: Let F = YI(k) and calculate the abundance matrix W

W = arg min
W
||Y−FW||2F , s.t.W � 0, 1Tr W = 1TN ,

3.4. Further Explanation

The overall algorithm is summarized in Algorithm 1. In Step
4, we solve (11) to find the index set I(k); Step 6 is to guaran-
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Fig. 1. Comparison of state-of-the-art methods with the proposed methods on a synthetic dataset.

tee the monotonic decreasing of the residual so that the algo-
rithm converges, and empirically the algorithm converges in
5 ∼ 10 iterations; in Step 9, the endmember matrix is recov-
ered by setting F = YI(k) and the abundance W is recovered
by solving a fully constraint least squares problem [24].

4. EXPERIMENT RESULT

We compare the noise robustness and the computational com-
plexity for the proposed SVP method with state-of-the-art al-
gorithms on a synthetic hyperspectral dataset for endmember
detection. Our comparisons are based on two criteria:

(1) (Recovery probability) Suppose the number of end-
member is r and we repeat the simulation for Ns times, the
recovery probability is defined by

Pr =
the number of recovered indices

Ns × r
(13)

(2) (Mean square error (MSE)) For each simulation, sup-
pose the estimated endmembers are {f̂1, f̂2, · · · , f̂N}, the
MSE is defined as

MSE = min
π∈Π

1

r

r∑
j=1

||f̂j − fπj
||2 (14)

where π = [π1, π2, · · · , πr], and Π = {π ∈ Rr|πl ∈
{1, 2, · · · , r}, πl 6= πm, l 6= m} is the set of all the permuta-
tions of {1, 2, · · · , r}. The problem in (14) can be efficiently
solved by the Hungarian algorithm [25].

To generate the synthetic data, first, for each simulation
we randomly extract r = 20 pure endmembers from a pruned
USGS library1 (the angle between each endmember in the
library is larger than 10o) to form the feature matrix F ∈

1http://www.lx.it.pt/ bioucas/code/sunsal demo.zip

R224×20, where the dimension for each endmember is L =
224. The weighting matrix W is generated by [Ir,U]Π ∈
R20×500, where Ir is an identity matrix so that there exists
one pure endmember for each selected material. Each column
of U ∈ R20×480 is generated by the Dirichlet distribution.
Π is a random permutation matrix so that the order of the
pure endmembers will not affect the performance of an algo-
rithm. The mixed matrix Y is generated as Y = FW + N,
where N is an i.i.d. white Gaussian matrix. We compare
the proposed SVP method with the following algorithms for
endmember detection: VCA [10], SPA [11], successive vol-
ume maximization (SVMAX) [9], alternating volume maxi-
mization (AVMAX) [9], XRAY [13] and the joint sparse re-
covery method (l1,2) [15]. The recovery probability and the
MSE for different signal-to-noise ratios (SNR) are shown in
Fig. 1. From the results, we can conclude that (i) the pro-
posed SVP method shows much enhanced noise robustness
compared with state-of-the-art greedy methods with approx-
imately the same computational time; (ii) our method shows
comparable result with l1,2-optimization method but much re-
duced computational complexity.

5. CONCLUSION

In this paper, we present a novel quasi-greedy approach,
named SVP, to solve the separable NMF problem. The pro-
posed approach adopts a back-tracking strategy and solves a
small-scale sub-optimization problem in each iteration. Our
method has superior noise robustness and low computational
cost, which has been demonstrated in the numerical experi-
ments. In the future, we would like to make further analysis
of the proposed method and apply it to other separable NMF
problem besides hyperspectral unmixing.
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