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ABSTRACT
The main drawback of conventional filtering based meth-
ods for small dim target (SDT) detection is they could not
guarantee sufficient suppression ability towards trivial high
frequency component which belongs to background, such
as strong corners and edges. To overcome this bottleneck,
this paper proposes an effective SDT detection algorithm by
using local connectedness constraint. Our method provides
direct control for target size, ensure high accuracy and could
be easily embedded into the classical sliding-window based
framework. The effectiveness of the proposed method is
validated using images with cluttered background.

Index Terms— Small dim target detection, Connected-
ness constraint, Region growing, Sliding window

1. INTRODUCTION

Small dim target (SDT) detection in infrared (IR) image is
deemed as a key technique for applications such as infrared
searching and tracking (IRST), accurate guidance for missiles
and satellite remote sensing. Due to atmospheric transmission
and attenuation, a long-distance imaging target usually ac-
counts for only one or a few pixels in the imaging plane (may
be modeled using two-dimensional Gaussian [1, 2, 3, 4]).
Therefore conventional image features like corners and edges
are nearly unavailable. Most traditional SDT detection meth-
ods [4, 5, 6, 7, 8, 9] solve the problem by implementing vari-
ous kinds of filters upon input image. Methods as such can be
categorized into two groups: direct high-pass filtering based
(e.g. directional filters [4], LoG [5]) and oblique low-pass
filtering based [6, 7, 8, 9]. The diagrams of the above two
subcategories are summarized in the lower part of Fig.1.

In general, although the filtering based approaches have
advantages such as simple implementation and good perfor-
mance in homogeneous background, they suffer from two
typical drawbacks in cluttered scenes. First, they could not
totally handle the trivial high frequency component that be-
longs to background, such as corners and edges. These trou-
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Fig. 1. Comparison of processing diagrams between our method and the
conventional filtering based approaches.

blesome staffs may come from the sky-sea lines in the water-
surface scene or the corners of a building in the land scene.
It becomes nearly incapable of tuning appropriate threshold
to filter the remaining false positives. Second, edges or cor-
ners may even gain unwanted enhancement that is even more
obvious than that of targets. This fact brings obstacle into
further identifying the targets according to their energy. The
above disadvantages are illustrated by Fig.2 using a synthetic
test image. Note the edge false positive of Max-mean [6] and
TDLMS [9] and the corner false positive of Max-median [6]
and Top-hat [7]. Notice that in Fig.2 among the conventional
methods, the Max-median [6] performs best, since it can the-
oretically maintain the lines of four directions after filtering.
Unfortunately, it would still degenerate the lines beyond four
directions as well as corners.

This paper proposes an effective small dim target detec-
tion method based on local connectedness constraint. Our
method could overcome the aforementioned drawbacks that
traditional methods suffer from. Our motivation comes from
the phenomenon that we have observed: small dim targets
usually present the signature of isolation, i.e. discontinuity
from their neighbor regions. This assumption is somewhat
shown in the test image by the red rectangle in Fig.2. In
contrast, the edges and corners could easily connect to their
neighborhood that locates outside the yellow boxes. This
connectedness character is an important signature that helps
distinguish SDT from those high frequency distracters. Our
method is based on the local connectedness constraint and ac-
curately catches the target in Fig.2 (see the last image). The
overview of our method is shown in the upper part of Fig.1.
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Fig. 2. Comparison of baseline methods (low-pass filtering based) with our
method on a test image containing a SDT as well as strong corners and edges.

2. THE PROPOSED METHOD

To begin with, our method employs the pixel-wise sliding
window strategy that is also widely used by the traditional
filtering based methods. The output of our method is a de-
cision map on which value “1” represents the corresponding
window covers target and “0” for vice versa. In each sliding
window, connectedness constraints are proposed to analyze
the growed region. The following subsections will first intro-
duce our connectedness constraints and then demonstrate our
choice for region growing algorithm.

2.1. Connectedness Constraint
Since a SDT is usually an isolated blob that overshoots from
its neighborhood whereas edges and corners are not, after im-
plementing region growing, the growed region is supposed to
be constrained (bounded) by a local window. Let the ith slid-
ing window be Wi and the gray level and position of its cen-
tral point be Ii and pi. We propose to constrain the region’s
connectedness to be located only inside the window. The
procedure is as following: in each window Wi, we take the
central point pi as seed (indicated by the red point in Fig.3)
and run a region growing algorithm that is specially-designed.
Based on connectedness, we judge whether the growed region
is totally constrained by window Wi. If so, then this window
is deemed as covering a target and its location pi on the output
decision map is set to value “1”. Otherwise if the growed re-
gion touches the window boundary, the covered part is more
likely to belong to homogenous background (second image in
Fig.3) or edge/corner (third image in Fig.3). The correspond-
ing location on the decision map is then set to “0”.

Here, the function of the size of Wi should be highlighted.
Since Wi is used to constrain the connectedness, its size de-
termines the largest target (upper bound) our system could
handle. If the target’s size is equal or larger than the win-
dow size, according to the connectedness constraining strat-
egy above, the region growing could reach the window bound-
ary and then it would be discarded. Specifically, Wi is set to

R1 R2R1

R2

R3 R1

R2

Fig. 3. The connectedness constraining strategy. The above images are
three window examples from a synthetic input image, where Ri, i = 1, 2, 3
denote different regions in the windows. From left to right, the windows are
respectively located on: an proper SDT candidate, homogenous background,
edge/corner. The green boxes highlight the regions that contain central points
while the red arrows indicate the growed regions touch the window bound-
aries. Only the first case will be identified as covering a target.

be a bit larger than the desired targets.
However, in some applications, too small target may be-

long to noise and should be rejected as well. To meet this de-
mand, we extend our method by using double-window strat-
egy, i.e. considering both outer window W out and inner win-
dow W in. The rationale for inner window is to provide lower
bound of size for the target we desire. Hence, a double-
window couple should simultaneously satisfy the following
two conditions so as to be a “target-covering” window:

Condition (i): The connectedness region should be con-
strained inside the outer window W out.

Condition (ii): The connectedness region should fill the
inner window W in.

Because some small size clutter parts fail to fill the in-
ner window, they would be ultimately discarded. The double
window strategy is illustrated using Fig.4, in which only Tar-
get 2 could be detected successfully. The advantage of using
double windows is that it provides direct control for target’s
size, which could hardly be guaranteed by the typical filter-
ing based methods. Although our method adopts nearly the
same sliding window strategy that the filtering based methods
usually do, in contrast, ours could easily filter out edges and
corners using such connectedness constraints.

As the double windows offer the lower and upper bound
(denoted as [rin, rout], in which rin and rout are respectively
the window radius for inner and outer window) for target’s
size, for each detected candidate, sometimes we want to know
its exact size. Hence after a connectedness region satisfies
the above two conditions, we continue the following step to
obtain the actual target’s size range: gradually shrink the gap,
i.e. reduce the upper bound and increase the lower bound to
make the following deviation Ei achieve its minimum:

Ei = min
r̂ini ,r̂out

i

|r̂outi − r̂ini | (1)

s.t.


rin ≤ r̂ini ≤ r̂outi ≤ rout

Condition (i)

Condition (ii)

(2)

where r̂ini and r̂outi respectively represent the dilated and
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Fig. 4. Double window strategy. Since only Target 2 satisfies the both
conditions, it would be the only one among these three targets that can be
detected successfully.

eroded window radiuses. The narrow bound [r̂in, r̂out] pro-
vides the estimated size range at position pi for each target.

2.2. Region growing
Although some sophisticate region growing algorithms for
weak boundary region discovery in gray images [11, 12, 13]
can be employed, they usually get quite a few parameters to be
tuned and are also computationally expensive, for we need to
run such an algorithm for pixel-wise sliding windows. Instead
we propose a simple but effective region growing strategy to
meet this task. Our motivation is based on that SDT-like iso-
lated blob is able to be popped out by using a threshold value
that is a bit lower than its peak value (see W1 in Fig.5). This
local threshold value T l

i for each window Wi is adaptively
chosen as:

T l
i = min{Ii + Ibi

2
, Ii − T o} (3)

Fj =

{
1 if Ij ≥ T l

i

0 otherwise
s.t. pj ∈Wi (4)

where Ibi denotes the intensity average of W out
i ’s boundary

pixels and is treated as a rough intensity estimation of the
background nearby (owing to W out

i is usually a bit larger than
the desired targets). Using the average of Ibi and Ii as thresh-
old could highlight most prominent part of a SDT. In case of
small overshoot being detected (see W2 in Fig.5), overshoot
threshold T o is introduced as well. Only blobs with the over-
shoot that is larger than T o could be detected. Fj indicates
the resulting binary pixel. Three typical cases of applying
this operation are illustrated using 1-D examples in Fig.5.

In Fig.5, W1,W2,W3 represent three windows that cover
a target candidate, a blob with too small overshoot and an
edge respectively. In W1, the central part of the target candi-
date could be directly segmented out (see the pink line labeled
parts). For W2, because the overshoot is too small to exceed
T o, the whole pixels in the window pop out. For the edge pre-
sented in W3, only the right part is above the threshold. As
analyzed before, since SDT has the signature of isolation, the
corresponding binary region could be totally bounded by win-
dow W1. In contrast since W2 and W3 cover nearly flatten and
edge areas, after thresholding, the binary regions could not be

W1 W2 W3

1
lT

2
lT

3
lT

Fig. 5. Local thresholding operation in 1-D case. W1,W2,W3 respec-
tively represent three windows which cover a target candidate, a blob with
too small overshoot and an edge. The red point in each window represents
the corresponding central point. Here note for W2, although the blob can be
partially thresholded out by using the average of Ii and Ib, it is still too small
to pass T o. So T l

2 actually takes the second term in the minimum function.

Algorithm 1 Effective SDT Detection
Input: rin, rout, T o and input IR image I;
Output: decision map D, location list L and size list S;

1: while for each sliding window-couple W in
i and W out

i do
2: Binarize all pixels in the window W out

i using T l
i , re-

sulting in binary map B;
3: Run a binary region growing algorithm on the binary

map B using central point as seed;
4: if Condition (i) and Condition (ii) are satisfied then
5: Di = 1;
6: Shrink the outer window radius r̂out and increase

the inner window radius r̂in to estimate actual target
size range Ui = [r̂in, r̂out] (Ui is also an interval);

7: else
8: Di = 0
9: end if

10: end while
11: Run an 8-neighbour connectedness detection on D;
12: while for each foreground region Rj do
13: Insert the region center location into L;
14: The range

⋂
k Uk, pk ∈ Rj is inserted into S;

15: end while

constrained totally inside the window and is able to connect
to the window boundary easily. Hence after thresholding, we
only focus on the positive region (value equals 1) in each win-
dow and take the window’s central point as seed, based on
which a binary region growing algorithm (Flood Fill) [10] is
applied. Practically, this specially-designed region growing
method works well and is also more time efficient than those
in [11, 12, 13].

In general, our method gets three parameters to be deter-
mined, respectively are inner and outer window size rin and
rout, and overshoot threshold T o. When they are set accord-
ing to specific demands, the sliding window based strategy is
used to detect target candidates. Note that since our method
guarantees direct size range control, it is naturally multi-scale.
The pseudo-code for our technique is shown in Algorithm 1:
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Fig. 6. The effect of changing T o. The upper left sub-image shows the
original image with cluttered cloud background and its 3D lateral view. Five
targets are labeled in yellow boxes. Their sizes are respectively 1× 1, 3× 3,
5× 5, 7× 7 and 9× 9 pixels. The remaining three sub-images show results
under varied T o. The size of red rectangles equals rout and the size of green
rectangles equals r̂out (the estimated target size). Note that as T o becomes
smaller, more and more false positives are generated.

ri=0 Decision mapro=5 ri=1 ro=5 Decision mapri=2 ro=5 Decision mapri=3 ro=5 Decision map

Fig. 7. Tuning rin and rout can control the target’s size in Fig.6.

3. EXPERIMENTS AND RESULTS

Experiment with threshold T o: T o may determine the en-
ergy gap between the window central point and the local
threshold. In order to successfully detect the desired tar-
gets, this gap should not be larger than the extent that targets
overshoot out from their local neighborhood. Otherwise, the
targets’ surroundings will also be thresholded out according
to (3) and (4) and cannot be constrained by the outer window,
leading to entire target being rejected. Hence T o should keep
smaller. On the other hand, if T o is too small, it will cause
more false positives, for a very small overshoot would be de-
tected as target. The effect of changing T o is shown in Fig.6,
where the rin and rout are set to 0 and 5 respectively. In
practice, T o is trained empirically through grid search using
background images without any target and also images with
manually labeled targets to achieve a trade-off between false
positive and false negative.
Experiment with scale selection: Our method provides di-
rect control on target’s size by tuning rin and rout. Fig.7
shows the experimental results. As the lower bound rin in-
creases, more and more smaller targets are rejected.
Comparison with the baseline methods on detecting multi-
scale targets: The top two rows of Fig.8 shows the results
of conventional filtering based methods including max-mean
[6], max-median [6], top-hat [7] and TLDMS [9]. Their win-
dow size is set as two times the maximum target size [4] to
achieve good performance. It is obvious that in such cluttered
background, traditional approaches could not offer sufficient
suppression ability towards cloud edges and corners. Their

Max-mean Max-median

Top-hat TLDMS
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Fig. 8. Both visual (top left) and quantitative (top right) comparisons with
baseline methods. The last row shows that Max-median [6], which is the
best among traditional approaches, enhances both targets as well as corners.
When we use it as pre-processing for our method and then gradually increase
T o, a corner still remains even after the 7× 7 target is rejected.

results contain large amount of noises and many of them are
also target-like blobs (most happens on corners). Using a
post-thresholding may lead to lots of ambiguous detections.
The top right graph in Fig.8 shows the ROC curves [4] on
tens of test IR images containing about fifty targets with var-
ied sizes. By using varied threshold value to segment the re-
sulting maps, different false positive and negative rates are
obtained. Note for our method, we switch T o to adjust perfor-
mance. It is observed from Fig.8 our method achieves the best
ROC curve and the highest AUC (Area Under ROC Curve)
score. Top-hat [7] and TDLMS [9] perform worst due to their
weak background suppression ability (Fig.8).

The last row in Fig.8 shows experiment where we use
max-median [6] as pre-processing since such filtering based
methods seem to be able to enhance targets and suppress
background. We gradually increase T o to filter out the false
positives one by one. Unfortunately, the result is that a desired
target with size 7× 7 is first rejected when there still remains
a false positive. This implies that after applying max-median
filtering, some corners may gain unwanted enhancement
which is even more obvious than targets themselves.

4. CONCLUSION AND FUTURE WORK

This paper proposes an effective algorithm for SDT detec-
tion by local connectedness constraint. Two constraint con-
ditions are imposed to analyze the growed region generated
by using local thresholding. Double-window strategy guar-
antees both lower bound and upper bound of size for desired
targets. Comparing with conventional methods, our method
could pick up targets from cluttered scene more accurately.

As our method has not considered the intensity gradient,
in the future, we plan to incorporate more cues like distribu-
tion fitness and gradient extent to enhance the performance.
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