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ABSTRACT

We investigate sampling and detection of orthogonal frequency-
division multiplexing (OFDM) signals with unknown carriers at
sub-Nyquist rates. Efficient acquisition and processing of such
broadcast signals is a challenge but constitutes a crucial part of
enabling cognitive radios. In order to alleviate both the analog and
digital burden when treating wideband signals, we adapt the modu-
lated wideband converter (MWC), a recently proposed sub-Nyquist
sampling system, to fit OFDM signals. In particular, after detecting
the active bands using the MWC, we use several different equal-
ization methods in order to improve the bit-error rate (BER). We
then show how to process the real sub-Nyquist samples in each band
in order to recover the complex OFDM signal. A standard digital
OFDM receiver is then used to detect the input symbols. To evaluate
the performance of our system, we derive an analytical bound on the
BER as a function of the received signal to noise ratio. Simulations
validate the proposed system.

Index Terms— Compressed sensing, modulated wideband con-
verter, multiband sampling, OFDM, cognitive radios

1. INTRODUCTION

Spectral resources are traditionally allocated to licensed or primary
users (PUs) by governmental organizations. Today, most of the spec-
trum is already owned and new users can hardly find free frequency
bands. In light of the ever-increasing demand from new wireless
communication users, this issue has become critical over the past few
years. Various studies [1, 2, 3] have shown that this over-crowded
spectrum is usually significantly underutilized and can be described
as the union of a small number of narrowband transmissions spread
across a wide spectrum range. This motivates cognitive radios (CR),
which allow secondary users to opportunistically use the licensed
spectrum when the PU is inactive [4, 5].

One of the crucial tasks in the CR cycle is spectrum sensing [6].
The CR has to constantly monitor the spectrum and detect the PU’s
activity in order to select unoccupied bands, before and through-
out its transmission. At the receiver, the CR samples the signal and
performs detection to assert which band can be exploited for oppor-
tunistic transmissions. To minimize the interference caused to PUs,
the spectrum sensing task performed by a CR must be reliable and
fast [7, 8, 9]. On the other hand, in order to increase the chance to
find an unoccupied spectral band, the CR has to sense a wide band
of spectrum. Nyquist rates of wideband signals are high and can
exceed today’s best analog-to-digital converters (ADCs) front-end
bandwidths. Besides, high sampling rates generate a large number
of samples to process, affecting speed and power consumption.
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To overcome the rate bottleneck, several new sampling meth-
ods have been proposed [10, 11, 12] that reduce the rate in multi-
band settings below the Nyquist rate. In [12], the authors present
the modulated wideband converter (MWC), a sub-Nyquist system,
that purposely aliases the signal and samples it at a low rate. Re-
covery techniques that exploit compressed sensing methods are then
utilized after sampling to identify the signal support. The paper con-
siders general modulation types and focuses on support recovery.

In this paper, we consider orthogonal frequency-division mul-
tiplexing (OFDM) modulation, which is the most common broad-
casting method today. We follow the basic configuration of the 4G
LTE E-UTRA standard. We aim to show, as far as we know for the
first time, sampling of an OFDM signal and detection of its encoded
symbols from sub-Nyquist time domain samples without knowing its
carriers and with no prior knowledge of the signal except for spar-
sity in frequency. In [13, 14] the authors consider a sparse OFDM
signal with known sub-carriers. The signal is recontructed from its
sub-Nyquist samples, by exploiting this a priori knowledge of the
potentially active sub-carriers. The works of [15, 16] offer CS tech-
niques for spectrum sensing however they do not detect the digital
symbols themselves but rather the power spectrum of the OFDM
signal.

We present the MWC-OFDM system, which samples a wide-
band signal composed of several OFDM transmissions with un-
known carriers at a sub-Nyquist rate. Our approach is completely
compatible with standard digital OFDM detectors so that after our
poposed processing, a standard OFDM receiver can be used on the
sub-Nyquist samples. We use the MWC [12] for the sampling stage
and support recovery. The encoded digital data is then recovered
through blind signal reconstruction. The MWC-OFDM architecture
consists of (1) OFDM transmitter (2) MWC - mixing, sampling
(3) post-processing tailored to OFDM signals (4) digital OFDM
receiver. Our main contribution is the inscription of sub-Nyquist
sampling performed by the MWC in a real communication scenario.
In order to reconstruct the input signal from its sub-Nyquist sam-
ples, we investigate several equalization techniques. We then derive
a reconstruction method for recovering the original complex signal
from real samples. This processing is back compatible with a reg-
ular digital OFDM receiver. The performance of the MWC-OFDM
receiver is evaluated in terms of bit error rate (BER) as a function of
the received signal to noise ratio (SNR). Last, we derive an analyti-
cal bound on the performance of symbol recovery from sub-Nyquist
samples in noisy settings. Simulations show that we can obtain
degradation of less than 0.5dB from this theoretical bound.

2. SYSTEM MODEL AND PROBLEM STATEMENT

OFDM is a popular modulation scheme used in applications such
as digital television and audio broadcasting, wireless networks, and
4G mobile communications. It extends the concept of single carrier
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modulation by using multiple orthogonal subcarriers within the same
single channel. Here we consider a multiband model, as described
in [12], in combination with OFDM.

We consider N OFDM transmissions spread arbitrarily within
some large bandwidth, which we denote by BW . We also define
fmax as the maximal frequency that data could be transmited on and
accordingly we define fmin as the minimal frequency that data could
be transmitted on, so that BW = fmax − fmin. Note that BW is
the possible occupied bandwidth on each side of the frequency axis,
positive and negative. The carrier frequencies are assumed to be
unknown. Each transmission is an independent OFDM signal with
bandwidth B.

Fig. 1. Typical spectrum support of a multiband signal composed of
three OFDM transmissions.

When transmitting an OFDM signal, the first step is to encode
the information bits into symbols using a modulator. We use a 4-
QAM modulator and denote the series of symbols by Xk[m]. The
inverse fast Fourier transform (IFFT) is then applied to Nf symbols
to yield

xk[n] =
1√
Nf

Nf−1∑
p=0

Xk[p]e
j2πnp
Nf . (1)

Next, the digital signal xk[n] passes through a digital to analog con-
verter (DAC) creating a continuous time signal

xk(t) =

∞∑
n=−∞

xk[n]g(t− nTs), (2)

where Ts = 1
fs

is the symbol rate and g(t) is a lowpass filter shape,
which will be specified later on. The signal is then I-Q modulated,
in order to transmit a real signal at high frequencies. The transmitted
signal is then given by

sk(t) = R{xk(t)} cos(2πfkt)− I{xk(t)} sin(2πfkt), (3)

where sk(t) stands for the kth OFDM transmission with carrier fk.
The final signal is composed ofN OFDM transmissions and is given
by s(t) =

∑N−1
k=0 sk(t). Standard OFDM receivers consist of ana-

log I-Q demodulation block and a digital processing unit as shown in
Fig. 2. In Section 3, we describe our modified receiver that blindly
reconstructs the signal from sub-Nyquist samples before performing
QAM symbol detection.

Fig. 2. Ideal OFDM digital receiver: ADC, FFT block and a QAM
demodulator [17].

Since the carriers are unknown, the Nyquist rate of the signal is
given by fnyq = 2BW , and the standard approach is to sample at
this rate, which may exceed the specifications of the best analog-to-
digital converters (ADCs) by orders of magnitude and will result in
a tremendous amount of samples to be processed. Thus, sampling at
fnyq is not an efficient option. Our goal is to sample the transmitted
signal at a rate lower than fnyq , but still allow data decoding with
low BER. In [11], the authors show that the minimal rate allowing for
perfect recovery of a signal from the multiband model in a noiseless
environment is twice the Landau rate [18], namely 4NB.

In the simulations, we consider 4G LTE signals, in which chan-
nel carriers can be in the range of fmin = 0.7GHZ to fmax =
2.1GHZ (BW = 1.4GHZ ). The FFT size is 2048 and a typical
channel bandwidth is B=20MHz.

3. THE MWC FOR OFDM SIGNALS

The MWC is a sub-Nyquist sampling system designed for sampling
sparse wideband analog signals. It consists of two stages: sampling
and reconstruction. In this section, we introduce the mechanism and
principles of MWC sampling. Then, we detail the additional OFDM
processing that is needed after the MWC and prior to the standard
receiver chain, to perform I-Q demodulation.

Fig. 3. High-level architecture of the MWC-OFDM.

Figure 3 shows the MWC-OFDM architecture. The system is
composed of (a) OFDM transmitter introduced in Section 2. (b)
MWC mixing and sampling block which we describe in Section 3.1.
(c) Continuous to finite (CTF) block as proposed in [12] for support
detection. (d) MWC DSP block for signal reconstruction which we
describe in Section 3.2. (e) OFDM processing block described in
Section 3.3. (f) digital OFDM receiver.

3.1. MWC Mixing and Sampling

The MWC [12] is composed ofm parallel channels. In each channel,
an analog mixing front-end, where x(t) is multiplied by a mixing
function pi(t), aliases the spectrum, so that each band appears in
baseband. The mixing functions pi(t) are required to be periodic.
We denote by Tp their period and we only require fp = 1

Tp
≥ B.

The function pi(t) has a Fourier expansion

pi(t) =

∞∑
l=−∞

cile
j 2π
Tp

lt
. (4)

In each channel, the signal goes through a lowpass filter with
cut-off frequency fs

2
and is sampled at rate 1

Ts
= fs ≥ fp. The

samples of the i-th channel are denoted by yi[n]. For simplicity,
we choose fs = fp. In [19] the authors investigate the effect of
non-ideal filters on the MWC and develop the perfect reconstruction
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(PR) condition. We use a raised cosine lowpass filter that satisfies
this condition.

The overall sampling rate is m · fs where m ≤ L. We also
define L0 =

⌈
2·fmasx+fs

2fp

⌉
− 1 where L = 2L0 + 1 as calculated

in [12] and LLTE = 211. The relation between the known DTFTs
of the samples yi[n] and the unknown X(f) can be written as

y(f) = Az(f), f ∈ Fs, (5)

where y(f) is a vector of length m where the ith element yi(f) is
the DTFT of yi[n] and Fs = [− fs

2
, fs

2
]. The unknown vector z(f)

is of length L = 2L0 + 1 with

zi(f) = X(f + (i− L0 − 1)fp)), 1 ≤ i ≤ L. (6)

The m× L matrix A contains the coefficients cil , such that Ail =
ci,−l = c∗il with M ≥ L. Reconstructing z(f) for all f ∈ Fs is
equivalent to recoveringX(f) for all f ∈

[
− fmax

2
, fmax

2

]
. We note

that m < L for the overall sampling rate to be below the Nyquist
rate, leading to an underdetermined system.

3.2. MWC Reconstruction

The reconstruction part consists of two stages carried out in the time
domain. First, we perform spectral support recovery, which relies on
recent ideas developed in the context of analog compressed sensing
[20]. It is implemented by a series of digital computations, which are
grouped under the Continuous-to-Finite (CTF) block that determines
the support S [12]. The basic CS model we try to solve is given by

y[n] = A(z[n] + e[n]), (7)

where z[n],y[n] are the IDTFT transforms of z(f),y(f) and e[n]
is additive noise with variance σ2. The unknown vector z[n] can be
reconstructed as follows [12]

zS [n]zi[n] = A†Sy[n], = 0, i /∈ S. (8)

Here, the submatrix AS is comprised of the columns of A in-
dexed by S, the vector zS [n] is comprised of the elements of z[n] in-
dexed by S and the notation (·)† denotes the Moore-Penrose pseudo
inverse. This reconstruction method, or linear equalization, is for-
mally known as zero-forcing (ZF).

There are several linear equalization methods that may produce
better performance depending on the SNR. In this paper we present
results of simulations with several reconstructions methods we ap-
plied to the MWC. In particular, we examine matched filtering (MF),
corresponding to

zs[n] = A∗sy[n]. (9)

We also examine Wiener filtering, taking into consideration that our
noise is not white, but is colored with covariance C = σ2AA∗.
This leads to the following reconstruction formula:

zs[n] = (A∗s(AA∗)−1As + σ2I)−1A∗s(AA∗)−1y[n]. (10)

Another approach we examined is using pre-whitening techniques.
Let B = (AAt)−1/2 and define ỹ = By. This leads us to the
following ZF and MF reconstruction, respectively:

zs[n] = (A∗s(AA∗)−1As)
−1A∗s(AA∗)−1y[n], (11)

zs[n] = A∗s(AA∗)−1y[n]. (12)

Additional explanations and details can be found in [21].
To ensure good performance in the presence of noise, as ex-

plained in [22], the matrix A should be chosen as close to unitary as
possible. While a variety of sequences have been suggested for the
MWC [23], we focused on the Legendre sequence from [24] which
result in a matrix very close to unitary. The matrix A is a m × L
binary pattern, where the expression for the basic sequence is given
by

C0 = 1, Ci =

{
+1, if i is a square
−1, if i is a non-square

i > 1. (13)

The matrix A is then constructed by randomly shifting this sequence
as described in [24].

Once the lowrate sequences of the spectrum slices zi[n] are re-
covered at the DSP unit, they pass to the next unit, namely OFDM
processing.

3.3. OFDM processing

As explained in (2), the digital receiver expects to receive samples
of an I-Q demodulated signal, which can be expressed as

xk[n] = {[y(t) · (cos(2πfkt)− j sin(2πfkt))] ∗ h(t)}t=nTs
.

(14)
Here y(t) is the received analog signal, and h(t) is the impulse re-
sponse of the antialiasing lowpass filter, used before sampling. We
have seen that the MWC outputs every spectrum slice from the re-
ceived signal as lowrate sequences around baseband, denoted by
zi[n]. Our goal now is to process these sequences in order to provide
the required samples to the digital receiver.

We focus on a single transmitted signal in order to analyze the
processing needed. The OFDM signal before broadcast is xk(t) =
rk(t)+ j · ik(t), where rk(t) and ik(t) stands for the real and imag-
inary parts of the signal, respectively. The transmitted signal after
I-Q modulation is given by (3) and its Fourier transform is

Sk(f) =
1

2
[Rk(f − fk) +Rk(f + fk)]+

+
j

2
[Ik(f − fk)− Ik(f + fk)] . (15)

Consider the positive and negative frequency parts of Sk(f)

Sk±(f) =
1

2
[R(f ∓ fc)± j · I(f ∓ fc)] . (16)

After passing the transmitted signal sk(t) through the MWC, each
low-rate sequence zi[n] represents either a positive or negative spec-
trum slice around baseband. We denote by zi+(f) a positive spec-
trum slice and by zi−(f) its corresponding negative slice. The spec-
trum slices can be written explicitly as

zi±(f) =
1

2
[R(f)± j · I(f)] . (17)

Thus, in order to recover the real (imaginary) part of the original
OFDM transmission xk[n] before I-Q modulation, we add (sub-
stract) the low-rate sequence representing the negative spectrum
slice and its corresponding positive spectrum slice:

xk[n] = [zk+[n] + zk−[n]] + j [zk+[n]− zk−[n]] . (18)

Without noise, these recovered samples are exactly the samples the
digital receiver expects. We note that by adding the positive and neg-
ative spectrum slices we effectively improve the SNR of the real and
imaginary parts by a factor of 2, thus allowing the same performance
as in sampling I and Q seperately. This processing stage allows us to
continue with xk(t) as inputs into the digital receiver.
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4. BER MEASUREMENT

In this section we demonstrate the proposed architecture perfor-
mence by experimental results. We also explain why sampling
below the Nyquist frequency leads to noise folding.

4.1. Effective noise

Consider a scenario where a single OFDM transmission with un-
known carrier from the LTE model is to be sampled. One approach is
to sample the entire LTE spectrum of BW = (0.7GHZ − 2.1GHZ)
at the Nyquist rate. Using demodulation of the entire spectrum to
baseband and then sampling will result in a total sampling rate of
fNyq = 1.4 · 2 = 2.8GHZ where the factor 2 comes from the dou-
ble sampling for I-Q demodulation. Any method for sampling of the
entire BW at a lower rate will result in aliasing of both signal and
noise. As explained in [22], the gain in noise due to this aliasing
effect is given by NG = BW ·2

ftotal
. In order to lower the noise gain

(NG) , we use a bandpass filter and filter the signal to the effective
spectrum. We denote by Leff = 2·BW

fs
the number of spectrum

slices containing energy. Since the total sampling rate of the MWC
system is ftotal = mfs we define the ideal NG as

NGideal =
Leff

m
. (19)

Note that (19) introduces a tradeoff between the sampling rate
and the NG which we are able to measure. As explained in [25],
OFDM system performance is measured in terms of BER. Knowing
the modulation method, the system is characterized by a unique BER
curve as a function of the noise (measured by Eb

N0 dB). Since the
noise in the system is amplified we expect to measure a BER curve
shifted by 10 log10 (NG). The lowest shift that can be achieved is
by NGideal, leading to a minimal BER of BERideal. Thus, our
performance must be limited by BERideal. We now show that our
system allows us to get very close to this limit.

4.2. Experimental validation

We now simulate the proposed MWC-OFDM system and examine
its performance with a broadcasted 4G LTE signal. When choosing
the system parameters, we aimed for simulating a practical system.
Thus, we chose a non-ideal lowpass filter as described in Section 3.1
and selected the MWC sampling rate as fs = fp = B, which is
the minimal possible rate. The signal is broadcasted with a carrier
at 1GHz , which is unknown to the system and corrupted by additive
white Gaussian noise. Our results are averaged over 10 realizations
of the Legendre sequences. We measure BER in a noisy environment
under different reconstruction methods and compare the results with
the theoretical curve, BERIdeal.

Fig. 4 presents BER mesurments as a function of SNR for a
system with 71 hardware channels. The best reconstruction scheme
is the MF which is also the easiest to implement since it does not
require any matrix inversion. This is not surprising since the Leg-
endre sequences result in a matrix AA∗ that is close to I . The total
sampling rate is given by ftotal = 71 ·20MHZ = 1.42GHz =

fnyq
2

.

Fig. 4. BER as a function of SNR for 71 channels.

Fig. 5. BER as a function of SNR for 21 channels.

Fig. 5 presents the same scenario but for 21 hardware chan-
nels. The total sampling rate is given by ftotal = 21 · 20MHZ =

0.42GHZ =
fnyq

6
and the best scheme in this case is ZF. Both fig-

ures show a 0.5dB shift in the SNR value from the theory curve.
This may be explained by the non-ideality of the sytem and implies
that the number of hardware channels does not influence the shift in
SNR from the theory curve.

Fig. 6. Trade off between the sampling rate and SNR. The theoretical
gain is given by 10 log10(

Leff
m

) (19).

In Fig. 6 we compare the performance of the MWC system as
a function of the number of hardware channels and measure BER.
Measurements were performed with SNR = 8dB and 21 ≤ m ≤
69 . Assuming that the noise is white, we may deduce the effective
SNR from the measured BER . This reasoning shows that there is
around 0.5dB shift for a given number of channels from the theoreti-
cal curve which is consistent with the previous figures, so our system
is close to optimal.
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