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ABSTRACT

Active interference cancellation (AIC) is an effective tech-
nique to shape the OFDM spectrum, providing deep notches
over protected bands without affecting receiver design. How-
ever, AIC typically introduces spectrum overshoot, of concern
if compliance with a spectral emission mask is required. Most
AIC designs neglect these spectral spurs, focusing on mini-
mization of out-of-band radiation. We present a novel design
that explicitly takes spectral spurs into account. The resulting
optimization problem is convex and can be efficiently solved,
although for systems with a large number of subcarriers the
computational effort can be significant. A suboptimal solu-
tion based on a previous AIC design with a maximum power
constraint is also proposed. Its performance is close to opti-
mal while obtained at a much lower computational cost, com-
paring favorably to previous schemes.

Index Terms—Active Interference Cancellation, Spec-
trum Sculpting, Cognitive OFDM.

1. INTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM) has
been widely adopted as the modulation technique for many
broadband wireless communication systems. It is particularly
well suited to cognitive systems, as the transmit signal can
be easily adjusted to the available spectrum by turning on or
off different sets of subcarriers [1, 2]. In this way, spectrum
holes are generated to avoid interfering to primary users ly-
ing within the OFDM band. Unfortunately, merely turning
off subcarriers in order to minimize Out-of-Band Radiation
(OBR) is inefficient: due to the high sidelobe levels of the
Fast Fourier Transform (FFT) employed in OFDM, a large
number of subcarriers adjacent to the protected band must be
turned off to achieve sufficient OBR reduction.

More efficient approaches to OBR reduction do exist. In
particular, Active Interference Cancellation (AIC) techniques
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have gained interest recently [3]–[12]: they yield good per-
formance and, in contrast with precoding-based approaches
[13]–[21], they do not require the transmission of side infor-
mation or implementing specific decoding operations at the
receiver side, thus allowing straightforward integration in cur-
rent OFDM systems. AIC reserves a (small) subset of subcar-
riers (termed cancellation subcarriers, or simply cancellers)
for OBR reduction, without altering the remaining data sub-
carriers. This operation is transparent to the receiver, which
just discards cancellation subcarriers prior to data decoding.
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Fig. 1. Power spectra of OFDM signals after AIC, showing
typical spectral spurs.

A typical, often overlooked AIC byproduct is PSD over-
shoot, illustrated in Fig. 1. As the fraction of the total avail-
able power given to the cancellers is increased, the reduction
in OBR improves but, on the other hand, the spectral peaks
or ”spurs” located at the positions of the cancellers become
substantially larger. These spurs can be a limiting factor for
the application of AIC-based OBR reduction methods when
compliance to a tight spectral emission mask is required.

The problem of keeping spurs under control was consid-
ered in [7, 10]. As spurs appear at the positions of cancellers,
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the usual total power constraint is replaced in [7] with mul-
tiple constraints, one for each canceller. However, since the
constraints are placed directly on the magnitude of the can-
cellers’ coefficients, their impact on the PSD is not immedi-
ately clear, and some case-specific trial and error becomes
necessary in order to set the constraint values for satisfac-
tory results, with no guarantee of optimality regarding OBR
as the criterion of interest. On the other hand, the approach
in [10] addresses spectrum overshoot by thresholding the sin-
gular values of certain matrix featuring in the unconstrained
solution. Although this seems an effective means to reduce
spurs at low computational cost, it is an ad hoc method, so
that, similarly to [7], the performance obtained in terms of
OBR reduction is not clear; in addition, its flexibility is rather
limited, particularly if the number of cancellers is small.

In contrast, we present a novel AIC design which, simi-
larly to [12], is directly based on the OBR cost, but imposing
a single constraint on the maximum peak value of the result-
ing PSD, rather than a single total power constraint as in [12]
or multiple constraints on the canceller coefficients as in [7].
This approach results in a convex optimization problem which
can be solved with the aid of an adequate software package.
The associated computational load may be high for systems
with a large number of subcarriers, and thus we propose an
alternative suboptimal approach with reduced complexity and
small performance loss relative to the exact solution.

The paper is organized as follows. Sec. 2 presents the
signal model. The spectral peak-constrained AIC designs are
presented in Sec. 3. Performance results are given in Sec. 4,
and conclusions are drawn in Sec. 5.

2. SIGNAL MODEL AND AIC BASICS

Consider a cognitive OFDM transmitter with N subcarriers.
A primary system to be protected from interference is known
to operate in frequency band B within the bandwidth of the
cognitive transmitter and spanning NP contiguous subcarri-
ers. Together with these NP subcarriers, the AIC scheme
allocates NC more subcarriers for OBR reduction over B,
whereas the remaining ND = N − NP − NC subcarriers
are unaffected and used for data transmission.

The N × 1 vector modulating the subcarriers for a given
OFDM symbol can be written as x = [x0 x1 · · ·xN−1]

T =
αSd+Tc, where d ∈ CND is the zero-mean data vector with
covariance E{ddH} = IND

, and c ∈ CNP+NC comprises
the cancellation coefficients to be modulated on the reserved
subcarriers. Matrices S ∈ CN×ND and T ∈ CN×(NP+NC)

comprise different sets of columns of IN , and map the ele-
ments of vectors d and c, respectively, to their corresponding
subcarrier locations. The scaling factor α (0 < α ≤ 1) con-
trols how the available transmit power is shared between the
data and cancellation subcarriers. We take as a baseline the
case α = 1 and c = 0, i.e., all reserved subcarriers are simply
turned off. Hence, −10 log10 α

2 denotes the SNR loss (in dB)

incurred by the AIC scheme with respect to the baseline. The
OFDM spectrum is the superposition of all subcarrier spectra,
affected by their corresponding modulated coefficients xk:

X(f) =
N−1�

k=0

xkφk(f) = xTφ(f), (1)

where φ(f) � [φ0(f) · · · φN−1(f) ]
T , with φk(f) the peri-

odic sinc spectrum1 of the k-th subcarrier [12, 22].
In general, AIC approaches aim to choosing, for each

OFDM symbol, the cancellation vector c given current data
d, such that the signal spectrum over B is ‘small’ in some
sense. This symbol-by-symbol optimization, when subject to
constraints, may result in high computational load and a dif-
ficulty to address spectral peak control. To avoid this com-
plexity issue, we adopt the PSD-based framework from [12],
which moves most of the computational load to the offline de-
sign of the AIC structure, and results in low implementation
(online) cost. Specifically, canceller coefficients are taken as
linear combinations of data symbols, i.e., c = Θd, so that

x = (αS + TΘ)d = Gd, with G � αS + TΘ, (2)

where the weight matrix Θ ∈ C(NP+NC)×ND is to be opti-
mized. Since Θ is data-independent, it can be computed of-
fline, and the online complexity of the scheme boils down to
the computation of the product Θd for each OFDM symbol.

From (1)-(2), and following [12], the PSD is obtained as

Px(f) ≈ E
�
|X(f)|2

�
= tr{GHΦ(f)G}, (3)

with Φ(f) � φ(f)φH(f). Based on (3), the AIC design
problem subject to a total power constraint Pmax is stated as

min
Θ

�

B
Px(f)df s.t.

� ∞

−∞
Px(f)df ≤ Pmax. (4)

Introducing the N×N matrices ΦB �
�
B Φ(f)df and ΦT ��∞

−∞ Φ(f)df , (4) can be rewritten as

min
Θ

tr{GH(Θ)ΦBG(Θ)}

s.t. tr{GH(Θ)ΦT G(Θ)} ≤ Pmax,
(5)

which is a Least Squares problem with a single quadratic con-
straint. This problem can be efficiently solved by means of the
generalized singular value decomposition [12, 23].

3. SPECTRAL PEAK CONSTRAINED DESIGNS

3.1. Problem formulation and optimal design

While the solution to (5) is optimal in terms of OBR reduc-
tion, it is likely to result in unacceptable spectrum overshoot

1As in [12], conventional cyclic-prefix OFDM is assumed for simplicity.
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(see Fig. 1). Hence, our goal is not only to meet the trans-
mit power budget while minimizing OBR, but also to comply
with a given spectral mask, keeping spectral spurs below a
certain level. To this end, let us denote by D the frequency
band of data subcarriers. We define the peak ratio r as

r =
supf /∈D Px(f)

supf∈D Px(f)
. (6)

Note that, since Px(f) depends on Θ, so does r. Using (6),
and with rmax a design parameter that controls the admissible
level of spectral spurs, our proposed design can be stated as

min
Θ

�

B
Px(f)df s.t.

�
r ≤ rmax
α = 1

(7)

Let us focus on the peak constraint r ≤ rmax in (7). Let q0 de-
note the peak value of the PSD in D obtained for the baseline
scenario (α = 1, Θ = 0) in which reserved subcarriers are
turned off. Once these cancellation subcarriers are activated
according to some AIC design (α,Θ), then if we neglect the
effect of these cancellers over D, we can reasonably approxi-
mate supf∈D Px(f) ≈ α2q0, which is independent of Θ. On
the other hand, as seen in (3), Px(f) is convex in Θ for ev-
ery f . Thus, the constraint r ≤ rmax, which is equivalent to
supf /∈D Px(f) ≤ α2q0rmax, is convex [24, Sec. 3.2.3]. Since
the objective function is convex, it follows that (7) is a convex
problem, for which efficient solvers are available2.

Note that in problem (7) the power budget is not taken into
account. Nevertheless, its solution, say P̃x(f), can be read-
ily scaled to meet the maximum transmit power constraint
Pmax. Letting P̃ =

�∞
−∞ P̃x(f)df , and ᾱ2 = Pmax/P̃ , then

P̄x(f) = ᾱ2P̃ (f) still satisfies the peak constraint r ≤ rmax
(since scaling does not change the peak ratio), and its total
power is

�∞
−∞ P̄x(f)df = Pmax, as desired. The SNR loss

incurred is given by −10 log10 ᾱ
2 dB.

3.2. Reduced-Complexity Suboptimal Design

The solution to (7) can be found using an appropriate con-
vex solver. However, this optimal solution may be difficult
to compute. For instance, for moderate and large values of
N , as in current OFDM standards, the number of entries of
Θ to solve for can be very large. In view of this, a reduced-
complexity approach is presented next; as will be shown in
Sec. 4, its effectiveness is not far from that of the optimal
solution, allowing to trade off performance and complexity.

The proposed reduced-complexity design exploits the fact
that the solution to problem (4), in which only the total power
is constrained, can be obtained efficiently. We notice that the
parameter α in (2) is fixed when solving (4), and that with
smaller values of α more power is allocated to cancellers,

2In practice, the set f /∈ D must be discretized, and the supremum is
replaced by the maximum over this discrete set of frequency points; the re-
sulting constraint remains convex [24, Sec. 3.2.3].
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Fig. 2. Performance of the optimal and suboptimal designs.
N = 64, NP = 10, NC = 4.

with the danger of larger PSD overshoot. Hence, it seems
plausible to control spectral spurs by properly tuning α.

We first search for the value α0 for which the solution
of (4) meets r = rmax. This value can be easily obtained
by means of the bisection method, and determines the range
α0 ≤ α ≤ 1 over which the best power share α∗ minimiz-
ing OBR and satisfying r ≤ rmax is to be searched. To this
purpose, we propose a gradient descent search of the form
αt = αt−1 − δ∇(αt−1), t = 1, 2 . . ., where δ > 0 is the
stepsize. Note from (2) that the objective function in (5) is
quadratic in α for fixed Θ. Neglecting the dependence of Θ
with α, we approximate its partial derivative w.r.t. α as

∇(αt) ≈ αt tr
�
STΦBT

�
+ �

�
tr
�
STΦBTΘt

��
, (8)

where Θt denotes the solution of (5) at α = αt. The iteration
is stopped once |αt+1 − αt| is below some threshold. This
suboptimal scheme will be referred to as α-AIC in the sequel.

4. PERFORMANCE EVALUATION

We now evaluate the performance of the novel designs from
Sec. 3, and also provide comparisons with the multiple-
constraint AIC design (MC-AIC) of [7], and the singular
value decomposition-based design (SVD-AIC) from [10].
Both MC-AIC and SVD-AIC are comparable in terms of
complexity to the proposed α-AIC design.

We first evaluate the gap incurred by α-AIC w.r.t. the op-
timal design, i.e. the solution to problem (7) after power nor-
malization. To this end, we consider an OFDM system with
N = 64 subcarriers and a 5% cyclic prefix. The protected
band B spans NP = 10 subcarriers (indices 20 to 29). A total
of NC = 4 cancellation subcarriers is assumed, with indices
18, 19, 30 and 31. In the discretization of the frequency axis,
a grid of 5 samples per subcarrier spacing is adopted.
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Fig. 2 shows OBR (expressed in dB relative to the value
of the PSD in the subband of data subcarriers) and SNR loss
values for the optimal and α-AIC designs, as a function of the
maximum peak ratio rmax. As expected, the behavior of both
schemes in terms of both OBR and SNR loss is monotone
with rmax: as the peak constraint is relaxed, lower OBR levels
can be achieved at the expense of a slightly larger SNR loss. It
is observed that, when compliance to a tight spectrum mask is
required (small rmax), the performance of α-AIC is very close
to that the optimal solution. As rmax is increased, however, a
flooring or saturation effect can be observed for α-AIC. This
is due to the fact that, for rmax above some value r∗ (≈ 3.15
dB in Fig. 2), α-AIC results in a peak ratio r = r∗ < rmax:
the peak constraint is satisfied with strict inequality, and thus
further relaxing the constraint does not have an impact on per-
formance. In any case, note that the gap in OBR with respect
to the optimal solution remains below 1.5 dB for all rmax ≤ 6
dB. This is further highlighted in Fig. 3, which shows the
PSD of the OFDM signal obtained by both designs and with
rmax = 1, 3 and 6 dB. In all cases the optimal and α-AIC
solutions exhibit significant overlap over B.

Next we compare the proposed designs against MC-AIC
[7] and SVD-AIC [10]. Again, a 5% cyclic prefix is assumed
with B spanning NP = 10 subcarriers, but now we consider
NC = 8 cancellation subcarriers (four at each edge of band
B), with different values of the total number of subcarriers
(N = 64, 256 and 1024). All designs were normalized to
have the same total transmit power. For MC-AIC and SVD-
AIC, results were obtained by averaging the signal power
spectrum over 105 OFDM symbols carrying i.i.d. QPSK data.
In the case of MC-AIC, all constraints on cancellation subcar-
riers were set to the same value, and this value was adjusted
to obtain the required peak ratio in each case.

Results are shown in Fig. 4. It is noted that SVD-AIC

2 4 6 8 10 12 14
−40

−38

−36

−34

−32

−30

−28

−26

−24

−22

−20

O
B

R
 (d

B
)

Peak Ratio r
max

 (dB)

α−AIC

Optimal

MC−AIC [7]

SVD−AIC [10]

Fig. 4. Performance of α-AIC, MC-AIC and SVD-AIC, for
N= 64 (solid), N=256 (dashed) and N=1024 (thin solid).
Results for the optimal design (7) for N= 64 are also shown.

is not flexible enough to provide acceptable results over the
range of interest. This is due to the fact that it is not possible to
fine-tune the level of the spectral spurs that result as small sin-
gular values in the corresponding matrix are discarded. MC-
AIC does provide more flexibility in this regard, and for large
values of rmax it actually outperforms α-AIC, due to the fact
that MC-AIC does not exhibit a flooring effect. Note, how-
ever, that the onset r∗ of saturation for α-AIC shifts to larger
values as N increases. Also, the performance of MC-AIC
is seen to degrade with larger values of N , whereas that of
α-AIC actually improves. As a result of these facts, α-AIC
outperforms MC-AIC in the range of interest (small values of
rmax). Note that for N = 64, α-AIC is within 1 dB (resp. 3
dB) of the performance of the optimal solution for rmax ≤ 2
dB (resp. rmax ≤ 6 dB). The optimal solution for larger N
was deemed too costly to compute.

Whereas MC-AIC could in principle yield better results
by individually adjusting its constraints on the different can-
cellers, this is a nontrivial task due to the increased number
of degrees of freedom. In contrast, α-AIC is easily tuned for
best performance by adjusting a single parameter α.

5. CONCLUSIONS

A novel spectral peak constrained AIC design was presented
in order to deal with the spectrum overshoot problem. A for-
mulation in terms of the signal PSD naturally leads to a con-
vex optimization problem. A suboptimal, but more practical,
reduced-complexity scheme was proposed with small perfor-
mance loss for low allowable overshoot levels, as is likely the
case in practice. This suboptimal scheme outperforms previ-
ous AIC designs of comparable computational cost.
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