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ABSTRACT

Advances in hardware and communication technology make dis-
tributed sound acquisition increasingly attractive. We describe a
distributed beamforming method based on the diffusion adaptation
paradigm. In contrast to existing distributed beamforming methods,
the method does not impose conditions on the topology or the struc-
ture of the network nor does it require knowledge of the noise co-
variance matrix. The algorithm can continuously track changes in
the noise covariance matrix, making it suitable for a practical, dy-
namic environment. It will typically perform one iteration per sig-
nal sample, limiting communication requirements. Our experiments
confirm the effectiveness of the method.

Index Terms— Enhancement, speech, audio, beamforming

1. INTRODUCTION

Traditionally sound signals have been acquired with a limited num-
ber of microphones. With the decreasing cost of hardware and rapid
advances in wireless communication technology it is natural to as-
semble distributed sound acquisition systems that use a large number
of microphones arranged in an ad-hoc or planned manner. Ad-hoc
networks, in particular, are becoming attractive as mobile devices
with microphones are ubiquitous and self-localization is now becom-
ing possible (e.g., [1, 2, 3]).

To exploit the potential that distributed sound acquisition offers,
new algorithms are needed. Particularly important in this respect
are distributed signal processing algorithms. Distributed algorithms
facilitate scalability, reduced power consumption for transmission
out of the network, and robustness to the removal and addition of
network nodes. We focus on beamforming, which can be used to
selectively acquire a source placed at a particular location (in near-
field beamforming, which is most relevant for the distributed case) or
at a particular angle (in far-field beamforming). Our aim is to provide
a robust and effective framework for distributed beamforming that
eliminates the restrictions imposed by existing methods.

Early work on distributed beamforming (e.g., [4, 5]) was aimed
at defining desirable beam patterns. Bertrand and Moonen used dis-
tributed processing to perform optimal beamforming in a noisy en-
vironment [6, 7]. Their method does not assume prior knowledge
of the noise covariance matrix and can handle a full covariance ma-
trix. Drawbacks of the beamformers described in [6, 7] are that they
require a fully connected network or a tree topology and require an
ordering of the computations in the nodes.

The distributed beamformers described by [8] and [9] do not
place conditions on the network topology. The method of [8] as-
sumes that the noise covariance matrix is both known and diagonal,
resulting in a delay-and-sum algorithm, which is suboptimal if the
noise is correlated between the sensors. The authors note that es-
timation of the noise covariance matrix requires knowledge of the

activity of the source. The algorithm is based on gossip (e.g., [10])
with the nodes reaching a consensus on the beamformer output for
each source sample. This means that the full gossip process must be
performed until convergence for each successive signal sample.

The distributed beamformer of [9] removes the condition that the
noise covariance matrix must be diagonal, which means it approx-
imates the Minimum Variance Distortionless Response (MVDR)
beamformer. It also removes the condition that the iterations are
completed for each signal sample. The method is based on message
passing and, as a result, the algorithm of [9] requires that the noise
covariance matrix (after scaling so that it is unit-diagonal) is diag-
onally dominant. This may imply adjustment of the off-diagonal
elements of the matrix. [9] also assumes that the full noise co-
variance matrix is known by the nodes. As the noise matrix is not
diagonal, its estimation is not trivial in the context of an unknown
source signal.

In this paper we use an approach to distributed beamforming
that is based on diffusion adaptation [11, 12]. Diffusion adaptation
allows scalable and robust learning that can adapt to changing statis-
tics in real time. While the approach has been applied to the coor-
dination of beamformers [13], it has not yet been applied to optimal
beamforming with distributed sensors.

In the remainder of this paper we describe a distributed beam-
forming algorithm that can operate at any rate relative to the signal
sampling rate. A typical implementation would perform one itera-
tion per signal sample, limiting computational effort. The approach
approximates MVDR beamforming and imposes no requirements on
the network topology or on the structure of the noise covariance ma-
trix. It does not require knowledge of the noise covariance matrix
and tracks changes in this matrix. It is, therefore, particularly suit-
able for commonly occurring dynamic environments, such as a meet-
ing with multiple talkers.

2. DIFFUSION-BASED MVDR BEAMFORMER

In this section we develop a diffusion-based approach to MVDR
beamforming that distributes processing and facilitates continuous
adaptation. Section 2.1 describes the method for determining the
optimal weight vector; and section 2.3 describes the limiting cases.

2.1. Determining the Weighting Vector

Consider a network of N nodes attempting to find an optimal es-
timate for a source signal, s, which is at a known location. The
network has a known topology meaning that the free-field acous-
tic transfer function from source to node can be computed. We
consider a narrow-band scenario, which can be obtained by lapped
transforms, and assume that the nodes have access to a synchronized
clock (e.g., through radio transmission).
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Let i be a time index. We use a linear model relating the scalar
observation uk(i), acoustic transfer function dk for the source,
source signal s(i) and interference nk(i) at node k. In anticipation
of later steps we write the model as

uk,i = dks(i) + nk,i, (1)

where symbols with time as a subscript represent vectors, boldface
symbols represent random variables, and uk,i, dk and nk,i are all
N × 1 vectors with single entries in the kth position equal to the
respective scalar values of the kth node and zeros elsewhere, i.e.
uk,i = [0, · · · ,uk(i), · · · , 0]T. We wish to obtain anN×1 weight-
ing vector wo that, when multiplied by a vector of observed signal
values ui = [u1(i), · · · ,uN (i)]T, yields the MVDR beamformed
output signal

zo(i) = u∗iw
o, (2)

where zo(i) is the optimal MVDR estimate for the signal, s(i). The
MVDR beamformer minimizes the variance of this estimate while
maintaining unity gain in the direction of the source signal, which
can be expressed as

min
w

E[|u∗iw|2], subject to d∗w = 1, (3)

where d = [d1, . . . , dN ]T and w is a weighting vector.
In a general partially connected network, neighbouring nodes

are capable of sharing their observations, which may be used to ap-
proximate the covariance of this pair. This allows a partial covari-
ance matrix to be calculated and used for optimization. When nodes
have access to their neighbours’ observations it is natural to define
the local cost function

J̃k(w) = E[|u∗Nk,iw|
2], (4)

whereNk denotes the neighborhood of node k and uNk,i, represents
the new observations available at node k after sharing

uNk,i =
∑
l∈Nk

ul,i. (5)

Since each node is assigned its own dimension in the notation (1),
this sum will simply be a vector of neighborhood obervations. In the
following, we will use (4) as an ansatz for finding a more appropriate
local cost function.

We first construct local cost functions that sum to a global cost
function that approximates the cost function of (3) with an error that
vanishes as ‖Nk‖ approachesN . To do that we have to consider that
if we simply sum the local cost functions over the entire network,
some covariances will be repeated and considered multiple times.
Let C2

0,1 denote the binary connection matrix, for which the {i, j}th
entry is 1 if a network connection exists between nodes i and j, and
0 elsewhere. Then, it can be shown that

N∑
k=1

J̃k(w) =

N∑
k=1

E[|u∗Nk,iw|
2]

=

N∑
k=1

w∗Ru,Nkw

= w∗(C2
0,1 ◦Rpartial

u,k )w, (6)

where Ru,Nk is the covariance matrix subjected to a binary mask
and ◦ is the Hadamard, or element-wise, product and the scaling
has been expressed by the element-wise multiplication of the desired

partial covariance matrix Rpartial
u,k . For the partial covariance matrix

to converge to the true covariance matrix with increasing ‖Nk‖ we
therefore define the local and global cost functions as

Jk(w) = w∗(C2]
0,1 ◦Ru,Nk )w, (7)

J(w) =

N∑
k=1

Jk(w), (8)

where the matrixC2]
0,1 is the element-wise inverse of the square of the

connection matrix. C2]
0,1 can be newly determined for every iteration

or updated when sensors appear or disappear in the network.
We can now minimize (8) in a distributed fashion by minimiz-

ing each of the local cost functions Jk. We have to perform the
minimization subject to the unity-gain constraint given in (3). In the
diffusion paradigm the minimization is done with a gradient algo-
rithm. The conjugate R-derivative [14] of the local cost function is

∇w∗Jk(w) = (C2]
0,1 ◦Ru,Nk )w (9)

and the corresponding stochastic gradient is

(C2]
0,1 ◦ (uNk,iu

∗
Nk,i))w. (10)

We can ensure that the solution satisfies the constraint by incorpo-
rating an orthogonal projection onto the constraint space

P⊥d = I − d(d∗d)−1d∗ (11)

followed by a shift of d(d∗d)−1. This projection was earlier applied
to the diffusion algorithm in [15].

We now can specify an iterative diffusion process:

φk,i = wk,i−1 + µk
∑
l∈Nk

clk(C
2]
0,1 ◦ (uNl,iu

∗
Nl,i))wk,i−1, (12)

ψk,i = P⊥d φk,i + d(d∗d)−1, (13)

wk,i =
∑
l∈Nk

alkψl,i, (14)

where µk is a constant step size value, the computation of ψk,i is an
intermediate step that projects the estimate φk,i onto the linear con-
straint subspace [16] and where the coefficients clk and alk specify
the data flow (“diffusion”) from node l to its neighbor, k. The data
flow coefficients satisfy:

alk ≥ 0,

N∑
k=1

alk = 1, alk = 0 if l /∈ Nk, (15)

clk ≥ 0,
N∑
k=1

clk = 1, clk = 0 if l /∈ Nk. (16)

2.2. Operation and Scalability

In this subsection we discuss the practical execution of the algorithm.
We assume that the node clocks are synchronous. This can be ac-
complished by transmitting a master clock signal.

The algorithm can be implemented by executing equations (12),
(13), and (14) for each time sample in each node k. The algorithm
requires the transmission of the N × 1 vector ψl,i over each link,
except for links where the flow coefficients alk are set to zero. In
addition, the scalar observations must be transmitted over two links
to enable the computation of uNl,i in node k. Alternatively, we can
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transmit ‖Nl‖×1 vectors to the node k. Additionally, the algorithm
requires knowledge of theN×1 vector d at each node. The elements
dk of this vector can be computed in each node k from knowledge
of the desired source location and change only when the network
topography changes.

It is clear that nodes in physical locations far from the source
signal are effectively not part of the computations. We can also en-
force this artificially. Note that the vector d is assumed known. This
means that the vector ψk,i can be truncated to include only nodes in
a region that makes significant contributions. While we do not pur-
sue this avenue here, it indicates that the algorithm can be made to
scale to an unlimited number of nodes.

Finally, we consider the computation of the source signal esti-
mate. In the basic configuration of the algorithm, each node knows
all weights of the beamformer. (In scalable implementations this is
no longer true.) Each node k can compute an estimate of each source
sample s(i) by multiplying its scalar observation uk(i) with the kth
element of the vector wk,i. The summing of these elements gives
the output of the beamformer. It is natural to agglomerate the es-
timates within the network and have designated nodes to transmit
either complete or partial estimates out of the network.

2.3. Limiting Cases

It is illustrative to consider the limiting cases of the beamformer ap-
proach. These are the fully connected case, where all nodes have
access to all observations, and a disconnected network where nodes
only have access to the local observation.

Let us first consider the limiting case of global knowledge of all
observations - an unrealistic scenario as this would require a fully
connected network. When all nodes have access to all observations,
ui, (7) becomes

Jk(w) =
1

N
E[|u∗iw|2], (17)

as C2]
0,1 is equal to the scalar 1

N
since the connection matrix is now a

full matrix of ones. Thus, the gradient algorithm now minimizes the
MVDR criterion of (3).

Next, we consider the case where the observations are not pro-
vided directly to the neighbours. Equation (7) now becomes

Jk(w) = E[|u∗k,iw|2]. (18)

In this case the beamformer exploits only the variance of each node
and has no knowledge of covariance between nodes. The resulting
diagonal covariance matrix corresponds to the delay-and-sum algo-
rithm. Note that while each node k uses only its own observation
for calculating its variance, the nodes still communicate with their
neighbours during the diffusion process, ensuring that all nodes ar-
rive at the same diagonal covariance matrix Ru,k, and that the unit
gain is maintained in the source direction.

3. CONVERGENCE AND STABILITY

In this section we show that convergence and stability of the
diffusion-based beamformer can be guaranteed. The results rely
on those for diffusion adaptation in [12] and on the projection
extension developed in [13].

To analyze the behaviour of the error, we first define a vector
that describes the error in the estimated weights at each time i. Each
node k has an estimate wk,i of the correct weight vector wo at time
i. We can define an error weight vector w̃k,i = wo −wk,i for each
node. We can extend this definition to a network-wide error vector

at time i by stacking the corresponding weight error vectors for all
nodes: w̃i = [w̃T

1,i, . . . , w̃
T
N,i]

T .
We can now study the behaviour of the estimated weights by

studying the evolution of the N2 × 1 error vector w̃i. By apply-
ing the correction mask C2]

0,1 to the principles described in [12, 13],
the recursion for the error of the partial MVDR beamformer can be
written as

w̃i = ATP(IN2 −M(C2]0,1 ◦Ri))w̃i−1 −ATPMCTni, (19)

where A and C are block diagonal matrices containing diffusion co-
efficients, P = IN ⊗ P⊥d ,M = IN ⊗ diag(µ1, · · · , µN ), C2]0,1 =

IN ⊗ C2]
0,1, and Ri is a blockdiagonal matrix constructed from the

matrices RN1,i through RNN ,i and the vector ni is a stacking of

nNk,i = uNk,iv
∗
k(i) (20)

vectors over the node index, where v∗k(i) is independent measure-
ment noise at each node.

We wish to ensure convergence in the mean. We find that this is
ensured when the restriction

µk <
2

ρ(C−2
0,1 ◦Ru,Nk )

(21)

is placed on the step sizes µk [12, Theorem 6.1], where ρ(·) is the
spectral radius operator.

Mean error vector convergence to zero is not a sufficient condi-
tion to ensure stability of the partial MVDR scheme. If the variance
E‖w̃i‖2 is bounded then the process is mean-square stable. It fol-
lows from [12, Theorem 6.7] that the adaptive diffusion strategy is
mean-square stable if, and only if, the stepsize is smaller than the
bound given in (21). Moreover, the convergence rate of the algo-
rithm is determined by the spectral radius of the matrixATP(IN2−
M(C2]0,1 ◦Ri)) in (19).

4. EXPERIMENTAL RESULTS

In this section we first describe the experimental setup and then pro-
vide the experimental results.

4.1. Experimental Setup

We simulated a network with N = 20 microphone nodes and a
source signal randomly distributed in a 100 m ×100 m ×100 m en-
vironment. The results are averaged over 100 realizations. The dis-
tances from node k to all its neighbours were assumed to be known.
Neighbours were assumed to fall within a ball of L m, where L cor-
responds to a transmit range. The ball and the node locations were
used to create a right stochastic probability matrix with equal prob-
ability for connection if any pair of nodes were closer than L m.
The acoustic transfer function for each node was a complex scaling
by dk = 1

lk
e−jτk where lk is the distance between node k and the

source, τk = lk
c
2πf and the speed of sound c = 340 ms−1.

The signal of interest was a 5 or 10 s speech sample randomly
chosen from a 60 s recording. The interference was zero-mean Gaus-
sian with a randomly generated 20 × 20 covariance matrix where
variances were scaled by the speech sample’s power to produce the
desired signal-to-noise ratio (SNR) at the nodes.

The sample rate at each node was fs = 8 kHz and processing
was carried out on 6.25 ms Hanning windowed blocks with a 50%
overlap. The iterative diffusion steps were performed once per win-
dowed block or, equivalently, at a rate of 160 Hz. The data-flow
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coefficients were all equal. Finally, the step sizes µk are set to 0.001
of the upper bound defined by (21). Final estimates of the source
were taken by multiplying the observations with the weight vector
available in a single, random node. This performance is a lower
bound for a system where each node would compute its contribution
to the beamformer.

4.2. Results

We first evaluated the performance of our system as a function of
the transmit range. It should be noted that the behaviour depends on
the interference covariance matrix selected for the experiment. Fig.
1 shows the performance of the distributed partial beamformer as a
function of the transmit range at a 5 dB SNR. We show additionally
the performance of a centralized delay-and-sum and a centralized
MVDR beamformer. It is seen that for small transmit range L the
system performs like a delay-and-sum beamformer whereas for large
transmit ranges it approximates an MVDR beamformer. It falls short
of the MVDR solution at high transmit range because of the fixed
step size of the gradient algorithm, leading to bounded fluctuations
around the optimal weight vectors. A reduced step size would result
in better agreement at steady state but would limit the tracking ability
of the algorithm.

In the second experiment we evaluated the behaviour of our sys-
tem when the interfering signals have a time-variant covariance ma-
trix. Again the SNR at the nodes is set to 5 dB. The centralized
MVDR knows the initial full interference covariance matrix. How-
ever, we made the reasonable assumption that the centralized MVDR
beamformer is not informed of changes in the covariance matrix.
We assume the partial MVDR is initialized with the optimal MVDR
beamformer at the beginning of the experiment. The result is shown
in Fig. 2. It is seen that, because of the fluctuations around the mean,
the performance drifts somewhat upward from the optimal central-
ized MVDR. However, upon a sudden change of the interference
covariance matrix at 5 s, the distributed partial MVDR Beamformer
converges back to a near-optimal solution.

In the third and final experiment we display the performance of
the distributed partial MVDR system in a simulated practical envi-
ronment with three talkers. We consider three speakers: one is the
desired source, and the other two speakers are interferers. All are
equally loud. The speakers are located at random locations. The de-
sired speaker and the first interfering speaker talk continuously. The
third speaker starts talking at 5 s. The experimental results, averaged
over 100 simulations, are shown in Fig. 3. The output SNR at each
microphone remains constant within the first 5 s and then decreases
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Fig. 1. Partial MVDR output SNR with varying transmit range L.
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Fig. 2. Fully connected network optimally initialized in changing
interference.

to a lower steady state due to the second interferer thereafter. Our
partial MVDR beamformer improves the performance iteratively by
adapting its weight vector based on the observed statistical proper-
ties of the interference. The output SNR increases iteratively, except
when a new interfering speaker starts talking. It is visible that the
beamformer gain is reduced in the more complex environment with
two interfering talkers.
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Fig. 3. Partially connected network with two interfering talkers.

5. CONCLUSION

From the results we can conclude that that diffusion-based partial
MVDR is an attractive and practical method for distributed beam-
forming. In contrast to other methods, is does not require knowl-
edge of the covariance matrix, nor does it require specific network
topologies or restrict the properties of the covariance matrix. It was
shown that this results in good performance in practical, dynamic
environments, such as a scenario where other speakers interfere with
a desired speaker in a time-varying manner.

Our approach requires the broadcast of vectors between neigh-
bouring nodes. This is easily accomplished in a sensor network set
up for this purpose. The algorithm can also be used in an ad-hoc net-
work of mobile telephones. Communication must then be arranged
through a wifi network or the telephone network.
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