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ABSTRACT
The fixed point implementation of IIR digital filters usually
leads to the appearance of zero-input limit cycles, which de-
grade the performance of the system. In this paper, we de-
velop an efficient Monte Carlo algorithm to detect and char-
acterize limit cycles in fixed-point IIR digital filters. The pro-
posed approach considers filters formulated in the state space
and is valid for any fixed point representation and quantiza-
tion function. Numerical simulations on several high-order
filters, where an exhaustive search is unfeasible, show the ef-
fectiveness of the proposed approach.

Index Terms— IIR filters, finite wordlength effects, limit
cycles, Monte Carlo methods.

1. INTRODUCTION

The fixed point implementation of IIR digital filters leads to
the appearance of many undesirable finite wordlength effects
that degrade the performance of the system: quantization
noise, deviation from the desired frequency response due to
coefficient sensitivity, appearance of zero-input limit cycles,
etc. [1]. In this paper we focus on limit cycles (LCs), which
can hinder the performance of an IIR filter substantially, es-
pecially in devices requiring a low-power consumption and
thus an implementation with a reduced number of bits.

The state-space formulation of an LTI single-input single-
output (SISO) IIR digital filter is [2, 3]

w[n+ 1] = Aw[n] + bx[n], (1)

y[n] = c>w[n] + dx[n], (2)

where x[n] and y[n] denote the n-th sample of the input and
output respectively, w[n] = [w1[n], . . . , wM [n]]> is the
M×1 state vector at instant n, A is theM×M state transition
matrix, b and c are the M × 1 input and output transfer vec-
tors respectively, and d is the scalar feedforward gain. Under
zero-input conditions (i.e., x[n] = 0), Eq. (1) becomes

w[n+1] = Aw[n] = A2w[n−1] = · · · = An+1w[0]. (3)
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Making use of the eigen-value decomposition of A, Eq. (3)
can be alternatively expressed as [4]

w[n+ 1] = UΛn+1U>w[0], (4)

where U is anM ×M unitary matrix whose columns contain
the eigen-vectors of A and Λ = diag(λ1, . . . , λM ) is the
M×M diagonal matrix with the corresponding eigen-values.
Hence, if the filter is stable (i.e., |λm| < 1 for 1 ≤ m ≤ M
[3]) and x[n] = 0, Λn+1 = diag(λn+1

1 , . . . , λn+1
M ) → 0

as n → ∞, implying from Eq. (4) that w[n + 1] → 0 as
n → ∞, i.e., any initial state w[0] 6= 0 should eventually
reach the zero-state after a transient.

In a fixed-point implementation, the output of the system
has to be quantized. Given a quantization function Q(x), if a
double-length accumulator is available (type 1 realization in
[5]), Eq. (3) becomes

w[n+1] = Q (Aw[n]) =


Q
(∑M

j=1 a1jwj [n]
)

...

Q
(∑M

j=1 aMjwj [n]
)
 , (5)

with aij = A(i, j) denoting the (i, j)-th element of A.1 Sev-
eral fixed point representations and quantizer types can be
considered. Here we focus on the magnitude-sign representa-
tion and round-off quantizers. Assuming that wm[0] is quan-
tized using a wordlength of P + 1 bits (1 sign bit plus P
magnitude bits), denoted as bi,m[0] ∈ {0, 1} for 0 ≤ i ≤ P
and 1 ≤ m ≤M , then we can express wm[0] as

wm[0] = (−1)b0,m[0]
P∑
i=1

bi,m[0]× 2i−1 ×∆, (6)

where ∆ = 2−P , b0,m[0] is the sign bit (b0,m[0] = 0 ⇔
wm[0] ≥ 0 and b0,m[0] = 1 ⇔ wm[0] < 0) and bi,m[0]
(1 ≤ i ≤ M with i = 1 and i = M indicating the least
and most significant bits (LSB and MSB) respectively) are
the magnitude bits.

1In a single precision implementation (type 2 realization in [5]),
wm[n] =

∑M
j=1 Q(amjwj [n]). In the sequel we focus on the double pre-

cision case, as most modern digital systems contain double precision ALUs.
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It is well-known that the fixed point implementation of
a stable IIR digital filter may contain zero-input limit cycles
(LCs), s. t. w[n + 1] 9 0 as n → ∞ when Eq. (5) is it-
erated [2, 3]. The only way to guarantee that a fixed point
IIR filter is free from LCs is through an exhaustive search in
the filter’s state space [5, 6], which requires exploring up to
ST = 2(P+1)M states, and is thus unfeasible for high-order
filters. Many theoretical bounds on the maximum amplitude
that can be sustained by an LC (cf. [4, 5, 6, 7]) have been
developed, decreasing the number of states to be explored to
SR =

∏M
m=1 (2Km + 1) − 1, where Km ∈ Z+ is the max-

imum number of quantization steps that can be reached by
|wm[n]| as n → ∞. However, since the resulting number of
states can still be extremely large for high-order filters, some
heuristic algorithms that partially explore the state space us-
ing a complicated set of rules have been developed [8].

All of these algorithms consider only the detection of LCs
and not their characterization, i.e., obtaining important fea-
tures like the number of different LCs, their maximum am-
plitudes or their periods. In this paper, we introduce a Monte
Carlo algorithm that explores a fixed-point IIR filter’s state
space in an efficient and systematic way, by taking advan-
tage of the fact that LCs tend to concentrate on low-amplitude
states. The proposed approach can be used to characterize any
filter formulated in the state space, for any fixed point repre-
sentation and quantization function.

2. MONTE CARLO LIMIT CYCLE
CHARACTERIZATION ALGORITHM

Monte Carlo (MC) methods were introduced in the 1940s to
deal with intractable problems in statistical physics [9, 10,
11], and have been extended to a wide range of applications
since then [12, 13, 14]. Essentially, an MC approach is based
on generating many initial conditions according to a given
probability density function (PDF), usually known as pro-
posal density, letting them evolve following the rules of the
problem under study, and using the final results obtained to
estimate the quantities of interest.

As an alternative to exhaustive search or heuristic ap-
proaches, here we propose the Monte Carlo limit cycle char-
acterization (MC-LCC) algorithm, which is summarized in
Algorithm 1. The algorithm takes as inputs the state transition
matrix, A, the quantization function, Q(x), the precision,
P , and the proposal PDF used to draw initial states w[0],
p(w[0];θ) with θ denoting the proposal’s parameter vector,
and returns the set of the limit cycles found, C.

In Algorithm 1, we obtain first the maximum amplitude
that can be attained by an LC for each state, Am = Km∆,
where Km can be obtained using one of the many theoretical
bounds available [4, 5, 6], and provides us with the minimum
number of bits required to represent wm[n],

Bm = dlog2(Km + 1)e, (7)

Algorithm 1 MC limit cycle characterization (MC-LCC)
Input:

• A: state transition matrix.

• Q(x), P : quantization function and precision.

• p(w[0];θ): proposal PDF for w[0].

Algorithm:

1. Compute Bm (m = 1, . . . ,M ) and Nmax, and con-
struct the proposal PDF, p(w[0];θ) using Eq. (8).

2. For ` = 1, . . . , L:

(a) Draw w(`)[0] ∼ p(w[0];θ).

(b) For n = 0, . . . , Nmax − 1:

i. Obtain w(`)[n+ 1] using Eq. (5).
ii. If w(`)[n+ 1] = 0, then Break.

iii. Else, then CheckLC(w(`)[n+ 1]).

Output:

• C: set of limit cycles found.

with dxe indicating the smallest integer larger or equal than
x ∈ R+. We use this information to compute the theoret-
ical bound on the period of a limit cycle [4, 5], Nmax =∏M
m=1 2(Bm+1), and construct the proposal PDF, p(w[0];θ),

as shown in Section 3. From the proposal PDF, we generate L
initial test filter states and let them evolve using Eq. (5). For
each initial filter state, we stop the iteration either when the
zero-state or when a limit cycle has been attained (in which
case we store it). The function CheckLC determines whether
a limit cycle has been reached or not. Many possibilities exist
for implementing this function [8]. As a simple alternative,
we check whether the filter has reached a previously visited
state or not after 2rN0 < Nmax iterations for r = 0, 1, . . . , R.

3. PROPOSAL DENSITIES

The proposal density for w[0] is constructed as

p(w[0];θ) =

M∏
m=1

p(wm[0];θ), (8)

where θ is the vector containing the parameters of the
proposal and p(wm[0];θ) = p(sm[0])p(|wm[0]|;θ) with
sm[0] = sign(wm[0]) = 1 − 2bi,m[0]. For the sign bit
we use an equi-probable distribution, Pr{bi,m[0] = 0} =
Pr{bi,m[0] = 1} = 1

2 . For the modulus, we exploit the fact
that LCs tend to concentrate on low-amplitudes (as the filter is
stable) [5, 8], and consider several possibilities, as described
in the following sections.
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Fig. 1. Proposal PDFs: (a) Eq. (10) with α = 0.8; (b) Eq. (11) with γ = 0.9; (c) Eq. (14) with λ = 20.

3.1. Exponential Distribution on the Bit Representation

As a first possibility, we define p(|wm[0]|;α, {Bm}Mm=1),
where Bm is given by Eq. (7) and 0 < α ≤ 1 is a parameter
controlling the decay of the proposal, through the probability
associated to each of the bits used to represent |wm[0]|:

Pr{bi,m[0] = 1} =

{
αi−1/2, 1 ≤ i ≤ Bm;

0, Bm < i ≤ P. (9)

Note that we select each bi,m[0] and wm[0] independently
from the rest and from any previously selected state. Note
also that for the LSB we assign the same probability to a zero
and a one, whereas the probability of a zero increases with m
(i.e., we penalize high-amplitude initial states). Combining
Eqs. (6) and (9), it can be shown that

Pr{|wm[0]| = W} =

Bm∏
i=1

[
αi−1

2
b∗i +

(
1− αi−1

2

)
b∗i

]
,

(10)
where b∗i is the i-th bit (1 ≤ i ≤ Bm) in the binary represen-
tation of W and b∗i denotes the logical not operation on b∗i .
In this case, we have E {|wm[0]|/∆} =

∑Bm

i=1
(2α)i−1

2 and
Var {|wm[0]|/∆} = 1

16

∑Bm

i=1 22iαi−1(2− αi−1). Fig. 1(a)
shows the proposal for α = 0.8.

3.2. Exponential Distribution on the Modulus

As a simpler alternative, we consider a discretized exponen-
tial distribution directly on |wm[0]|:

p(|wm[0]|; γ, {Bm}Mm=1) = cγk, 0 ≤ k ≤ Km, (11)

where 0 < γ ≤ 1 is another decay parameter, and the normal-
izing constant is c = 1−γ

1−γKm+1 . Now we have

E
{ |wm[0]|

∆

}
=
γ[1− (Km + 1)γKm +Kmγ

Km+1]

(1− γ)(1− γKm+1)
,

(12)

and

Var

{ |wm[0]|
∆

}
= γ[1 + γ − (Km + 1)2γKm −K2

mγ
Km+2

+(2Km(Km + 1)− 1)γKm+1][(1− γ)2(1− γKm+1)]−1

−E {|wm[0]|/∆}2 . (13)

This proposal is shown in Fig. 1(b) for γ = 0.9.

3.3. Poisson Distribution on the Modulus

As a third and final alternative, we consider a Poisson distri-
bution directly on |wm[0]|:

p(|wm[0]|;λ, {Bm}Mm=1) =
λk

k!
exp(−λ), 0 ≤ k ≤ Km,

(14)
where λ > 0 is a third decay parameter. In this case, for
large enough values of Km, we have E {|wm[0]|/∆} =
Var {|wm[0]|/∆} ≈ λ. The proposal is shown in Fig. 1(c)
for λ = 20.

4. NUMERICAL RESULTS

In order to validate the MC-LCC algorithm, we use it to char-
acterize six filters described in the state space:

• Butt: Low-Pass Butterworth filter of order M = 18
with passband edge frequency ωp = 0.2π rad, stopband
edge frequency ωs = 0.33π rad, passband ripple Rp =
0.01 dB and stopband ripple Rs = 60 dB.

• Cheb1: Low-Pass Chebyshev filter of order M = 5
in [4]: ωp = 0.2022π rad, ωs = 0.4044π rad, Rp =
0.0187 dB and Rs = 54 dB.

• Cheb2: Band-Pass Chebyshev filter of order M = 14
with passband [0.3π, 0.6π] rad, stopbands [0, 0.2π] and
[0.7π, π] rad, passband ripple Rp = 0.1 dB and stop-
band ripple Rs = 45 dB.
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Fig. 2. Average results for Ns = 100 simulations of the Butterworth filter using the proposal PDF from Eqs. (9) and (10). (a)
N̂LC for α ∈ {0.2, 0.5, 0.8}. (b) K̂m (m = 1, . . . , 18) and K̂max (dashed line) for α = 0.2. (c) T̂max for α ∈ {0.2, 0.5, 0.8}.

Table 1. Results for the Butterworth filter: mean ± standard deviation using Ns = 100 and L = 2 · 104. B(Kmax) = 162.
Proposal Exponential Bits Exponential Modulus Poisson
Parameter 0.2 0.8 0.3 0.9 5 20
N̂LC 7851.8 ± 147.0 1686.8 ± 57.2 6551.1 ± 137.8 1646.7 ± 52.3 1609.2 ± 61.8 999.0 ± 37.5
K̂max 5.1 ± 0.3 5.3 ± 0.5 5.3 ± 0.5 5.3 ± 0.4 5.0 ± 0.2 5.0 ± 0.4
T̂max 12.0 ± 0.0 12.0 ± 0.0 12.0 ± 0.0 12.0 ± 0.0 12.0 ± 0.0 12.0 ± 0.0

• Elli1: Low-Pass elliptic filter of order M = 5 in [4]:
ωp = 0.2022π rad, ωs = 0.4044π rad, Rp = 0.0187
dB and Rs = 54 dB.

• Elli2: Band-Pass elliptic filter of order M = 6 in [4]:
ωp1 = 0.168π rad, ωp2 = 0.42π rad, ωs1 = 0.096π
rad, ωs2 = 3π

5 rad, Rp = 0.1 dB and Rs = 30 dB.

• Elli3: Low-Pass elliptic filter of order M = 7 with
passband edge frequency ωp = 0.2π rad, stopband
edge frequency ωs = 0.33π rad, passband ripple
Rp = 0.01 dB and stopband ripple Rs = 60 dB.

For all these filters, we obtain A and compute the theoretical
bound for Km using [4], B(Kmax) = max{B(Km)}, which
allows us to calculate Bmax from (7) and Nmax Then we ap-
ply the MC-LCC algorithm (using P = Bmax, N0 = 40,
R = 4) to estimate: (1) the number of states belonging to dif-
ferent LCs, N̂LC ; (2) the maximum number of quantization
steps reached by an LC, K̂m and K̂max = max{K̂m}; (3) the
maximum period of any limit cycle, T̂max.

Table 1 shows the results for the Butterworth filter us-
ing the three proposal PDFs introduced and different parame-
ters. Note that, although all of them provide similar results in
terms of K̂max and T̂max, the exponential PDFs outperform
the Poisson PDF in terms of N̂LC and simulation speed (not
shown), as they are more focused on the area where LCs tend
to concentrate. Hence, we choose the PDF in Eqs. (9) and
(10) to obtain the results for the remaining filters shown in
Table 2. Finally, Fig. 1 illustrates the evolution of N̂LC , K̂m

Table 2. Average Results for Ns = 100 using the proposal
PDF from Eqs. (9) and (10) with α = 0.2 and L = 104.

Filter Cheb1 Cheb2 Elli1 Elli2 Elli3
N̂LC 42.0 25950.1 66.0 54.0 362.0
K̂max 2.0 17.9 2.0 2.0 63.0
B(Kmax) 8 207 50 73 754
T̂max 1.0 612.0 6.0 12.0 10.0

and T̂max for the Butterworth filter as a function of L. Note
that, although N̂LC is still increasing for L = 20000, with
α = 0.2 and L = 500 we already obtain the same values of
K̂max and T̂max as using L = 20000.

5. CONCLUSIONS AND FUTURE LINES

We have introduced a Monte Carlo limit cycle characteriza-
tion algorithm (MC-LCC) to analyze the limit cycle (LC) be-
havior of fixed-point IIR digital filters efficiently and in a sys-
tematic way. The MC-LCC algorithm provides much more
information than traditional LC detection approaches, is ap-
plicable to high-order filters and can be adapted to any re-
alization (single or double precision), quantization function
(round-off or truncation) and implementation (sign and mag-
nitude or two’s complement). Future work includes extending
the algorithm to filter structures not formulated in the state
space and developing more sophisticated proposal densities.
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