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ABSTRACT
Monte Carlo (MC) methods are widely used in signal pro-
cessing, machine learning and communications for statistical
inference and stochastic optimization. A well-known class
of MC methods is composed of importance sampling and its
adaptive extensions (e.g., population Monte Carlo). In this
work, we introduce an adaptive importance sampler using a
population of proposal densities. The novel algorithm pro-
vides a global estimation of the variables of interest itera-
tively, using all the samples generated. The cloud of propos-
als is adapted by learning from a subset of previously gener-
ated samples, in such a way that local features of the target
density can be better taken into account compared to single
global adaptation procedures. Numerical results show the ad-
vantages of the proposed sampling scheme in terms of mean
absolute error and robustness to initialization.

Index Terms— Monte Carlo methods, adaptive impor-
tance sampling, population Monte Carlo, iterative estimation.

1. INTRODUCTION

Monte Carlo methods are widely used in signal processing
and communications [1, 2]. Importance sampling (IS) [3, 4] is
a well-known Monte Carlo (MC) methodology to compute in-
tegrals involving a complicated multidimensional target prob-
ability density function (pdf), π(x) with x ∈ Rn, efficiently.
The IS technique draws samples from a simple proposal pdf,
q(x), assigning weights to them according to the ratio be-
tween the target and the proposal, i.e., w(x) = π(x)

q(x) . How-
ever, although the validity of this approach is guaranteed un-
der mild assumptions, the variance of the estimator depends
critically on the discrepancy between the shape of the pro-
posal and the target. For this reason, Markov Chain Monte
Carlo (MCMC) methods are usually preferred for large di-
mensional applications [5, 6, 7, 8].

In order to solve this issue, several works are devoted to
the design of adaptive IS (AIS) schemes [4], where the pro-
posal density is updated by learning from all the previously
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generated samples. The Population Monte Carlo (PMC) [9]
and the Adaptive Multiple Importance Sampling (AMIS) [10]
methods are two general schemes that combine the proposal
adaptation idea with the cooperative use of a population of
proposal pdfs. In PMC, a cloud of proposals is updated using
propagations and resampling steps [4, Chapter 14]. In AMIS,
a single proposal is adapted following a standard adaptive IS
scheme, but the sequence of all the previous proposals is used
to build the global estimator (implying that all the previous
proposals must be evaluated at the new samples, thus leading
to an increase in computational cost as the algorithm evolves).

In this work, we introduce a novel population scheme,
adaptive population importance sampling (APIS). APIS
draws samples from different proposal densities at each
iteration, weighting them according to the so-called deter-
ministic mixture approach, proposed in [11, 12] for a fixed
(i.e., non-adaptive) setting. At each iteration, APIS computes
iteratively a global IS estimate, taking into account all the
generated samples up to that point. The main difference w.r.t.
AMIS and PMC lies in its more streamlined adaptation pro-
cedure. APIS starts with a cloud of N proposals initialized
randomly or according to the prior information available.
The algorithm is then divided into groups of Ta iterations
(so called epochs), where the proposals are kept fixed and
Ta samples are drawn from each one. At the end of every
epoch, the Ta samples drawn from each proposal are used
to update its parameters (using partial IS estimators). APIS
does not require resampling steps to prevent the degeneracy
of the mixture (as in PMC) and its computational cost does
not increase with the iteration number (as in AMIS).

For the sake of simplicity, in this work we focus on a
specific implementation with Gaussian proposal pdfs, whose
means are updated according to the partial IS estimators of
the expected value of the target, given Ta samples from each
Gaussian. In this way, APIS takes advantage of one of the
drawbacks of a standard IS method, since each proposal is
able to extract specific and localized features of the target ef-
ficiently. Thus, one proposal can describe a specific region,
while the remaining proposals explore other parts of the state
space. Numerical results show that APIS improves the perfor-
mance of a standard non-adaptive multiple importance sam-
pler regardless of the initial conditions and parameters.
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2. PROBLEM STATEMENT

In many applications, we are interested in inferring a variable
of interest given a set of observations or measurements. Let
us consider the variable of interest, x ∈ Rn, and let y ∈ Rd
be the observed data. The posterior pdf is then

p(x|y) =
`(y|x)g(x)

Z(y)
∝ `(y|x)g(x), (1)

where `(y|x) is the likelihood function, g(x) is the prior pdf
and Z(y) is the model evidence or partition function (useful
in model selection). In general, Z(y) is unknown, so we con-
sider the corresponding (usually unnormalized) target pdf,

π(x) = `(y|x)g(x). (2)

Our goal is computing efficiently some moment of x, i.e., an
integral measure w.r.t. the target pdf,

I =
1

Z

∫
X
f(x)π(x)dx, (3)

where Z =
∫
X π(x)dx.

3. THE APIS ALGORITHM

The adaptive population importance sampling (APIS) algo-
rithm tries to estimate Z and I by drawing samples from a
population of adaptive proposals. For the sake of simplicity,
here we only consider a population of Gaussian proposal pdfs
with fixed covariance matrices and we adapt only the means.
However, the underlying idea is more general: many kinds of
proposals could be used, including mixtures of different types
of proposals. Furthermore, other parameters (e.g., the covari-
ance matrices or any other shape/scale parameters) could also
be updated.1

3.1. Algorithm

The APIS algorithm is summarized below.

1. Initialization: Set t = 1, m = 0, Î0 = 0 and L0 = 0.
Choose N normalized Gaussian proposal pdfs,

q
(0)
i (x) = N (x;µ

(0)
i ,Ci), i = 1, . . . , N,

with mean vectors µ
(0)
i and covariance matrices Ci

(i = 1, . . . , N ). Select the number of iterations per
epoch, Ta ≥ 2, and the total number of iterations,
T = MTa, with M ≤ T

2 ∈ Z+ denoting the number
of adaptation epochs. Set also ηi = 0 and Wi = 0 for
i = 1, . . . , N .

2. IS steps:
1The joint adaptation of different types of parameters is more delicate, so

we leave it for a future work.

(a) Draw zi ∼ q(m)
i (x) for i = 1, . . . , N .

(b) Compute the importance weights,

wi =
π(zi)

1
N

∑N
j=1 q

(m)
j (zi)

, i = 1, . . . , N, (4)

and normalize them,

w̄i =
wi
S
, (5)

with S =
∑N
j=1 wj .

3. Iterative IS estimation: Calculate the “current” esti-
mate of I ,

Ĵt =

N∑
i=1

w̄if(zi), (6)

and the global estimate, using the recursive formula

Ît =
1

Lt−1 + S

(
Lt−1Ît−1 + SĴt

)
, (7)

where Lt = Lt−1 + S. Note that Ẑt = 1
NtLt.

4. Learning:

(a) Compute

ρi =
π(zi)

q
(m)
i (zi)

, i = 1, . . . , N. (8)

(b) Calculate the empirical means,

ηi =
1

Wi + ρi
(Wiηi + ρizi) , (9)

and set Wi = Wi + ρi for i = 1, . . . , N .

5. Proposal adaptation: If t = kTa (k = 1, 2, . . . ,M ):

(a) Adapt the proposals, moving them to the locations
corresponding to their empirical means, i.e., set

µ
(m+1)
i = ηi, i = 1, . . . , N, (10)

and q(m+1)
i = N (x;µ

(m+1)
i ,Ci).

(b) “Refresh memory” by setting ηi = 0 and Wi = 0
for i = 1, . . . , N . Set also m = m+ 1.

6. Stopping rule: The simplest possibility is: If t < T ,
set t = t+ 1 and repeat from step 2. Otherwise, end.

7. Outputs: Return the estimate of the desired integral,

ÎT ≈ I =
1

Z

∫
X
f(x)π(x)dx, (11)

as well as the normalizing constant of the target pdf,

ẐT ≈ Z =

∫
X
π(x)dx. (12)

The final locations of the Gaussians (i.e., their means,
µ

(M)
i for i = 1, . . . , N ) could also be used to estimate

the locations of the modes of π(x).

8089



3.2. Remarks and observations

In this section, we provide some important remarks on several
aspects of the APIS algorithm:

1. All the different proposal pdfs should be normalized to
provide a correct IS estimation.

2. The global estimators, ÎT and ẐT , are iteratively ob-
tained by an importance sampling approach using NT
total samples drawn (in general) from NT different
proposals: N initial proposals chosen by the user, and
N(T − 1) proposals adapted by the algorithm.

3. Different stopping rules can be applied to ensure that
the global estimators produce the desired degree of ac-
curacy, in terms of Monte Carlo variability. For in-
stance, one possibility is taking into account the vari-
ation of the estimate over time. In this case, the algo-
rithm could be stopped at any iteration t∗ < T , since
an IS approach does not have the convergence issues
(“burn-in” period) appearing in MCMC methods.

Moreover, let us observe that the algorithm works on two dif-
ferent time scales:

1. At each iteration (t = 1, . . . , T = MTa), APIS com-
putes the “current” estimate of the desired integral, Ĵt,
and updates recursively the global estimates of the de-
sired integral and the normalizing constant, Ît and Ẑt
respectively.

2. At the transition iterations between two epochs (t =
mTa with m = 1, . . . ,M ), the parameters of the pro-
posals, µ(m)

i for 1 ≤ i ≤ N , are updated.

Considering only the transitions (i.e., t = mTa), APIS
can be seen as a parallel implementation of N different adap-
tive IS methods using Ta = T

M ≥ 2 samples to adapt the
proposal pdfs and providing a single global estimation. Thus,
in the previous description the index t could be removed. In-
deed, within an epoch the proposals do not change, so we
could draw Ta i.i.d. samples directly from each proposal and
then adapt the proposals using these samples. However, we
prefer to maintain the previous description to emphasize the
fact that the accuracy of the estimator can be tested at each it-
eration t, and that the algorithm could be stopped at any time.

3.3. Black-box implementation

As in any other Monte Carlo technique, the performance of
APIS depends on the initialization, although this sensitivity
is reduced w.r.t. a standard IS approach, as illustrated in the
simulations. Hence, if some prior information about the tar-
get is available, it should be used to choose the initial param-
eters. However, if no prior information is available, a possible
black-box implementation of APIS is the following. (a) Se-
lect randomlyNµ different means in order to cover as much as
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Fig. 1. Contour plot of the target π(x), the initial µ
(0)
i

(squares) and the final µ(T )
i (circles) locations of the means

of the proposals for a single run of APIS (σi = 5, N = 100,
M = 40, T = 2000). The trajectories of two means in the
sample population are depicted in dashed line.

possible of the target’s domain, X ⊆ Rn. (b) For each mean,
choose Nσ different covariance matrices, implying that the
total number of different proposals is N = NµNσ .

4. NUMERICAL RESULTS

For the simulations, we consider a bivariate multimodal target
pdf, which is itself a mixture of 5 Gaussians, i.e.,

π(x) =
1

5

5∑
i=1

N (x;νi,Σi), x ∈ R2, (13)

with means ν1 = [−10,−10]>, ν2 = [0, 16]>, ν3 =
[13, 8]>, ν4 = [−9, 7]>, ν5 = [14,−14]>, and covariance
matrices Σ1 = [2, 0.6; 0.6, 1], Σ2 = [2, −0.4;−0.4, 2],
Σ3 = [2, 0.8; 0.8, 2], Σ4 = [3, 0; 0, 0.5] and Σ5 =
[2, −0.1;−0.1, 2]. Fig. 1 shows a contour plot of π(x).

We apply APIS with N = 100 Gaussian proposals to es-
timate the mean (true value [1.6, 1.4]>) and normalizing con-
stant (true value 1) of the target. We choose deliberately a
“bad” initialization of the initial means, to test the robust-
ness of the algorithm and its ability to improve the corre-
sponding static (i.e., non-adaptive) IS approach. Specifically,
the initial means are selected uniformly within a rectangle,
µ

(0)
i ∼ U([−4, 4]× [−4, 4]) for i = 1, . . . , N . A single real-

ization of µ(0)
i is depicted by the squares in Fig. 1.

Initially we use the same isotropic covariance matrix,
C

(0)
i = σ2I2, for every proposal. We test different values

of σ ∈ {0.5, 1, 2, 3, 5, 7, 10, 70}, to gauge the performance
of APIS. Then we also try different non-isotropic diago-
nal covariance matrices, C

(0)
i = diag(σ2

i,1, σ
2
i,2), where
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Fig. 2. (a)-(b): Mean absolute error in the estimation of the mean and normalizing constant of π(x), averaged over 2000 runs
as function of M (number of epochs) for (a) σ = 2 and (b) σ = 5. (c)-(d): Estimate of the first component of the mean as a
function of the iterations t for σ = 3, (c) M = 400 and (d) without adaptation (M = 1). The solid lines depict the true mean
value (1.6), and the darker and lighter areas show the range of 90% and 100% of the empirical probability mass, respectively.

Epochs \ Scale par. σ = 0.5 σ = 1 σ = 2 σ = 3 σ = 5 σ = 7 σ = 10 σ = 70 σi,j ∼ U([1, 10])

M = 1 (Ta = T ) 5.3566 6.8373 8.3148 3.6428 0.3926 0.1326 0.0886 0.3376 0.2048
M = 20 (Ta = 100) 4.6089 3.5248 1.9265 0.9083 0.1244 0.0910 0.0908 0.3397 0.0837
M = 40 (Ta = 50) 4.0862 3.3079 1.7518 0.7125 0.1056 0.0863 0.0940 0.3318 0.0689
M = 100 (Ta = 20) 3.7727 3.2009 1.5619 0.5776 0.0832 0.0822 0.0961 0.3441 0.0593
M = 400 (Ta = 5) 3.5577 2.6161 0.7708 0.1464 0.0685 0.0846 0.0972 0.3539 0.0535
M = 1000 (Ta = 2) 2.9543 0.9967 0.0550 0.0636 0.0814 0.0945 0.1102 0.3594 0.0700

Table 1. Mean absolute error in the estimation of the mean of the target (first component), averaged over 2000 runs, for
different values of σ and number of epochs, M ; M = 1 corresponds to a non-adaptive IS method, whereas M = T

2 = 1000 is
the maximum number of epochs possible for T = 2000. The best results for each value of σ are highlighted in bold-face.

σi,j ∼ U([1, 10]) for j ∈ {1, 2} and i = 1, . . . N . We
set T = 2000 and Ta ∈ {2, 5, 20, 50, 100}, i.e., M = T

Ta
∈

{20, 40, 100, 400, 1000}. We also consider M = 1, which
corresponds to a standard IS technique with multiple propos-
als and no adaptation. All the results are averaged over 2000
independent experiments.

Fig. 1 shows also the final locations of the means, µ(T )
i ,

in one run with σ = 5 using circles. Furthermore, the trajec-
tories of two means in the sample population are depicted in
dashed line. Note that a random walk among three modes of
the target is induced in one of them, whereas the other con-
verges to the mode that is further away from the origin. Table
1 shows the mean absolute error (MAE) in the estimation of
the first component of the mean: APIS always outperforms
the non-adaptive standard IS procedure, with the only excep-
tion of σ = 10, where APIS has a negligibly larger error.
Figs. 2(a)–(b) illustrate the evolution of the MAE w.r.t. M for
σ = 2 and σ = 5 respectively, whereas Figs. 2 (c)-(d) show
the estimate of the first component of the mean vs. the itera-
tion step t for a case with adaptation (σ = 3 and M = 400)
and a case with no adaptation (σ = 3 and M = 1).

5. CONCLUSIONS AND FUTURE LINES

We have introduced a novel adaptive population importance
sampling (APIS) algorithm, which is based on applying im-

portance sampling (IS) principles to a population of adaptive
proposal pdfs. Compared to other techniques, APIS has a
simpler adaptation procedure (based only on partial IS esti-
mations) and could be easily implemented in a parallel and/or
a distributed fashion.

Although the APIS scheme is quite general, here we have
focused on a specific implementation with Gaussian proposal
pdfs, adapting their means. Our experiments have shown that
APIS reduces the dependence on the choice of the parameters
of the proposal. Indeed, the proposed adaptation procedure
almost always improves the results w.r.t. the corresponding
standard non-adaptive IS method, regardless of the variances
chosen initially. The results suggest that smaller scaling pa-
rameters benefit more from a more frequent adaptation. Such
an inverse relationship between the variance of the propos-
als and frequency of adaptation is expected to hold also more
generally in a family of adaptive sampling schemes similar
to APIS (e.g., if the proposals were mixture densities them-
selves).

An interesting open issue is whether optimal adaptation
schemes could be identified under particular conditions. Also,
it would be interesting to explore in detail how the geometry
of the target density does in general influence the rate and
trajectories of proposal movements. The joint update of scale
and shape parameters and interacting adaptation schemes will
also be considered in future work.
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