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ABSTRACT

There are many practical signal processing settings where a
state-space model consists of a state described by an ARMA
process that is observed via non-linear functions of the state.
In this paper, we propose a particle filtering method for se-
quentially estimating the ARMA process in the presence of
unknown parameters. In the considered problem, we have
static and dynamic unknowns, and we show how to handle
the static parameters so that the estimation of the state pro-
cess does not degrade with time. We propose a new particle
filter that approximates the posterior of all the unknowns by a
Gaussian distribution, in combination with a Monte Carlo ap-
proach to the Rao-Blackwellization of the static parameters.
We demonstrate the performance of the proposed method by
extensive computer simulations.

Index Terms— ARMA processes, particle filtering, Rao-
Blackwellization, state-space estimation.

1. INTRODUCTION

In many signal processing applications, including speech pro-
cessing, communications and finance, state-space models are
often used [1]. In this paper, we study models where the state
is represented by an autoregressive moving average (ARMA)
process and the observations are non-linear functions of the
state. ARMA processes have two sets of parameters, autore-
gressive (AR) and moving average (MA) parameters. Mod-
eling data as ARMA processes is suitable for stationary time
series. In these models, a sample of the process depends on
its past samples as well as on a current and past unobserved
random perturbations. An ARMA process is often referred to
as ARMA(p, q), where p is the order of the AR part and q the
order of the MA part.

Inference of hidden-states in state-space models is a
widely studied problem. When the model is linear and the
driving noises are Gaussian, the optimal solution is provided
by the Kalman filter [2]. When the models deviate from
assumptions of linearity and Gaussianity, the processing of
the data under such models requires alternative solutions.
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Sequential Monte Carlo methods, also known as particle fil-
ters (PFs), constitute a possible approach. The PFs already
have a nice track record of applications in diverse disciplines
[3, 4, 5]. Motivated by applications such as representation
of asset returns in financial econometrics [6, 7], we are in-
terested in inference of hidden ARMA time series observed
through non-linear models.

The sequential estimation of states modeled as ARMA
processes is difficult because the MA parameters of the model
require non-linear estimation. If the observations are also
non-linear functions of the states, one has to look for ap-
proaches that can handle such difficulties. Particle filtering
methods have the capacity to overcome these challenges.

A problem in using particle filtering methods is that the
ARMA model has static unknown parameters and therefore,
one has to take special care in treating them. The application
of PFs to AR states with non-linear observations has already
been studied [8, 9, 10], where inference has been performed
using different methods with both known and unknown pa-
rameters. When dealing with unknown AR parameters, the
parameter estimation has been carried out by generating par-
ticles of all the states and parameters [8, 11] or by using Rao-
Blackwellization to integrate out the AR parameters [12]. The
latter approach is possible when the noise in the state equation
is Gaussian. More specifically, after Rao-Blackwellization,
one does not have to generate particles of the AR parame-
ters and the variance of the state noise (which is also assumed
unknown) and can directly draw particles of the state from
a t-distribution. Consequently, the performance of the PF is
improved because the generated particles come from a space
that has a considerably reduced dimension.

In the literature, there has not been much work on apply-
ing particle filtering to ARMA processes in the state equation.
In [13], estimation of both the state and time-varying ARMA
parameters was proposed. On the contrary, the ARMA pa-
rameters are static in our problem, which is usually an incon-
venience in particle filtering. We note that for these processes
Rao-Blackwellization of the static parameters cannot be ap-
plied analytically. In this paper, we show how we can achieve
this approximately. We propose an approach that models the
posterior of the state and the unknown parameters as a joint
Gaussian distribution. This allows us to implement a form of
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Rao-Blackwellization that yields state estimates with reduced
variance.

The paper is organized as follows. First, in Section 2 we
state the problem. In Section 3, we provide the details of the
proposed solution. In the following section, we show results
of extensive computer simulations where we demonstrate the
feasibility of the proposed method. We conclude the paper
with Section 5.

2. PROBLEM FORMULATION

The mathematical description of the state-space model is as
follows:

xt =

p∑
i=1

aixt−i +

q∑
i=1

biut−i + ut, state eq. (1)

yt = h(xt, vt), observation eq. (2)

The state is modeled by a generic ARMA(p, q) process, with
AR parameters ai and MA parameters bi, and the observation
is a non-linear function h(xt, vt) of the state. The symbols
ut and vt represent zero-mean white Gaussian processes in-
dependent of each other. The model orders p and q as well as
the variances of the noise processes are assumed known.

Given the observations y1:t ≡ {y1, y2, · · · , yt}, we
want to estimate sequentially the posterior distribution of
xt, f(xt|y1:t). We note that the parameters ai and bi are of
secondary importance. Clearly, we cannot estimate f(xt|y1:t)
without the joint posterior of the parameters, and in the next
section we show how this posterior is obtained.

3. THE PROPOSED METHOD

Particle filtering [14] is a well known approach for inference
in non-linear/non-Gaussian state-space models that approxi-
mates the posterior density of the states given all the available
observations by

f(xt|y1:t) ≈
M∑

m=1

w
(m)
t δ(xt − x(m)

t ), (3)

where x(m)
t are particles drawn from a proposal distribution

and w(m)
t are the weights associated to the particles.

The method proceeds sequentially, i.e., f(xt|y1:t) is ob-
tained from f(xt−1|y1:t−1) according to

f(xt|y1:t) ∝ f(yt|xt)
∫
f(xt|x0:t−1)f(x0:t−1|y1:t−1)dx0:t−1

≈ f(yt|xt)
M∑

m=1

w
(m)
t−1f(xt|x

(m)
0:t−1).

(4)

In the considered problem with ARMA state processes,
the predictive density of the state given all the previous states,

f(xt+1|x0:t), can only be derived analytically when dealing
with known ARMA parameters. However, in the presence
of unknown ARMA parameters, new alternatives must be ex-
plored. We propose to perform Rao-Blackwellization of the
ARMA(p, q) parameters to derive the corresponding predic-
tive density

f(xt+1|x0:t) =
∫
θ

f(xt+1|θ, x0:t)f(θ|x0:t)dθ, (5)

where θ =
(
a b

)>
=
(
a1 · · · ap b1 · · · bq

)>
.

The exact solution to the previous expression is analytically
intractable [15, 16], due to (a) the non-standard form of the
posterior of the parameters, f(θ|x0:t); and (b) the resulting
complex integration. To overcome these difficulties, we pro-
pose a two-step approximation of the above integral:

1. Approximation of the joint posterior of the state and the
parameters as a multivariate Gaussian, i.e.,

f(xt,θt) ≈ N (µt,Σt),

where we note that the subscript t in θt indicates ap-
proximation at time instant t and not that the parameter
is time-varying.

2. Monte Carlo integration of equation (5). We obtain a
set of J samples for θt, θ

(j)
t , and assign them appropri-

ate weights ρ(j)t , which allows numerical computation
of the predictive density as

f(xt+1|x0:t) ≈
J∑

j=1

ρ
(j)
t f(xt+1|θ(j)

t , x0:t).

Using the previously described concepts, we introduce a
new PF designed for ARMA hidden-state estimation by nu-
merical Rao-Blackwellization.

At time instant t, consider the random measure

χt =
{
x
(m,j)
t ,θ

(m,j)
t , w

(m,j)
t

}
,

where m = 1, · · · ,M and j = 1, · · · , J . Note that the no-
tation (m, j) means that for a given particle m, we have J
children (one per sample of the static parameters obtained
through the Monte Carlo integration of (5)), for a total ofMJ
particles.

Upon reception of a new observation at time instant t+1,
the algorithm proceeds as follows:

1. Approximate the joint state-parameter posterior distri-
bution with a multivariate Gaussian:

f(xt,θt|x0:t−1) ≈ N (µt,Σt),

8084



-6

-4

-2

0

2

4

6

8

50 100 150 200 250

x
t

t

(a) AR(2)

-4

-3

-2

-1

0

1

2

3

50 100 150 200 250

x
t

t

(b) MA(2)

-10

-5

0

5

10

50 100 150 200 250

x
t

t

(c) ARMA(1,1)

Fig. 1: Estimation (red) of the hidden-state (black)

where

µt =

M ·J∑
i=1

νt · w(m,j)
t ,

Σt =

M ·J∑
i=1

(νt − µt)(νt − µt)
> · w(m,j)

t

with νt being defined as νt =
(
x
(m,j)
t θ

(m,j)
t

)>
.

2. Downsample from MJ to M particles, obtaining a set
of resampled particles x(m)

t ,m = 1, · · · ,M .

3. Draw J parameter samples for each particle x(m)
t from

the conditional Gaussian:

θ
(m,j)
t+1 ∼ N (µ

θt|x(m)
t
,Σ

θt|x(m)
t

) j = 1, · · · , J.

4. Propagate the particles by drawing from the numeri-
cally Rao-Blackwellized mixture distribution:

x
(m,j)
t+1 ∼ f(xt+1|x(m,j)

0:t ) ≈ 1

J

J∑
j=1

f(xt+1|θ(m,j)
t+1 , x

(m)
t ).

5. Compute the unnormalized weights for the drawn par-
ticles according to

w̃
(m,j)
t+1 = f(yt+1|x(m,j)

t+1 ),

and normalize them to obtain a new random measure
χt+1 =

{
x
(m,j)
t+1 ,θ

(m,j)
t+1 , w

(m,j)
t+1

}
.

4. SIMULATION RESULTS

We evaluated the proposed method on the following stochas-
tic volatility model:

xt =

p∑
i=1

aixt−i +

q∑
i=1

biut−i + ut, (6)

yt = e(xt/2)vt, (7)

where the log-volatility xt is an ARMA(p, q) process with un-
known parameters θ =

(
a1 · · · ap b1 · · · bq

)>
and

the driving noises are independent and identically distributed
standard Gaussian variables.

The proposed PF successfully estimates the log-volatility
xt for different ARMA(p, q) state models. Figure 1 shows the
tracking results for a specific run of the following processes,
each evolving for 250 time units:

• AR(2): xt = 0.49xt−1 + 0.49xt−2 + ut,

• MA(2): xt = ut + 0.49ut−1 + 0.49ut−2,

• ARMA(1,1): xt = 0.8xt−1 + ut + ut−1.

In order to show the estimation accuracy of the proposed
method, the following simulation results were obtained by av-
eraging over 1000 realizations, using M = 1000 and J = 50
particles, unless otherwise indicated. First, we evaluated the
AR(p) case because then one can obtain the closed-form so-
lution to the integral in (5). The tracking accuracy of the pro-
posed method is compared to three other PFs: (a) the bench-
mark PF that assumes knowledge of the static AR parame-
ters (referred to as PF Known Param), (b) the PF where
the unknown AR parameters are analytically integrated (PF
Analytical RB), and (c) the PF where the unknown AR
parameters and the state are jointly estimated without any
Rao-Blackwellization (PF Param Estimation).

Table 1: AR(p) performance

PF type AR(1) MSE AR(2) MSE
PF Known Parameters 0.84950 1.1262
PF Analytical RB 0.86583 1.1520

Proposed PF Method 0.86807 1.3658
PF Param Estimation 0.87332 1.6689

The results are shown in Table 1 where the entries are the
Mean Square Errors (MSEs) of the estimates of the hidden-
state variable xt. The results reveal the validity of the pro-
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Table 2: ARMA(1,1) performance

PF Type ARMA(1,1) state estimation error (MSE)
a1 = 0.75, b1 = 0.6 a1 = 0.5, b1 = 0.5 a1 = 0.2, b1 = 0.75

PF Known Parameters 1.5418 1.1852 1.1251
Proposed PF Method (J=100) 1.5453 1.1999 1.1350
Proposed PF Method (J=50) 1.5484 1.2001 1.1353
Proposed PF Method (J=20) 1.5553 1.2004 1.1353

PF Param Estimation 1.5801 2.2108 1.1401

Table 3: ARMA Vs AR performance

PF Type State estimation error (MSE)
a1 = 0.75, b1 = 0.6 a1 = 0.5, b1 = 0.5 a1 = 0.2, b1 = 0.75

PF Known Parameters 1.5332 1.1824 1.1278
Proposed PF Method (J=50) 1.5423 1.1933 1.1373

Analytically RB AR(2) 1.5475 1.2071 1.1512
Analytically RB AR(3) 1.5497 1.2161 1.1582
Analytically RB AR(4) 1.5568 1.2253 1.1651
Analytically RB AR(5) 1.5676 1.2331 1.1755

posed method because it outperforms the PF that jointly esti-
mates all the parameters and has accuracy comparable to that
of PF Analytical RB.

We extended the simulation study to the general ARMA
case. Once again, the proposed method provides an accurate
tracking of the hidden state, as shown in Fig. 2 for a realiza-
tion of an ARMA(1,1) with parameters a1 = 0.8, b1 = 1.
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Fig. 2: ARMA(1,1) estimation (red) of the state (black)

In Table 2, we present the MSEs of the estimates of
xt for three ARMA models. They show that the pro-
posed method is consistently more accurate than PF Param
Estimation. We note that we did not implement PF
Analytical RB because there is no closed-form solution
to equation (5). We observe that the accuracy of the proposed

method is reasonably close to the ideal case (i.e., PF Known
Parameters). As expected, the more particles we use for
approximating the integral in (5) (larger J), the more accurate
our estimates become.

Finally, we provide more insight into the advantage of
our approach by emphasizing the importance of considering
ARMA processes in the state equation instead of approximat-
ing them by higher order AR processes. We reiterate that for
the latter we can apply analytical Rao-Blackwellizion of the
parameters. The results are shown in Table 3. They suggest
that the proposed method outperforms the method based on
AR process approximation and analytical Rao Blackwelliza-
tion. Interestingly, the results also show that the performance
of the AR-based method deteriorates with the increase of the
order of the approximating AR process.

5. CONCLUSIONS

In this paper we propose a new particle filter that tracks a
hidden ARMA state in the presence of non-linear observa-
tions. The method is based on a Monte Carlo form of Rao-
Blackwellization of the static ARMA parameters and an ap-
proximation to the posterior of all the unknowns by a multi-
variate Gaussian distribution. We conducted extensive simu-
lation studies on the stochastic volatility model. All the re-
sults show the validity of the proposed method. Future work
includes detailed study of the method where the state is mod-
eled with higher dimensional ARMA processes.
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