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ABSTRACT

Recently, Markopoulos et al. [1], [2] presented an optimal al-

gorithm that computes the L1 maximum-projection principal

component of any set of N real-valued data vectors of di-

mension D with complexity polynomial in N , O(ND). Still,

moderate to high values of the data dimension D and/or data

record size N may render the optimal algorithm unsuitable for

practical implementation due to its exponential in D complex-

ity. In this paper, we present for the first time in the literature

a fast greedy single-bit-flipping conditionally optimal itera-

tive algorithm for the computation of the L1 principal com-

ponent with complexity O(N3). Detailed numerical studies

are carried out demonstrating the effectiveness of the devel-

oped algorithm with applications to the general field of data

dimensionality reduction and direction-of-arrival estimation.

Index Terms— Dimensionality reduction, direction-of-

arrival estimation, eigen-decomposition, L1 and L2 princi-

pal component, machine learning, outlier resistance, subspace

signal processing.

1. INTRODUCTION
Conventional -and vastly successful over the years- subspace

signal processing theory and practice relies on L2-norm based

singular-value decomposition (SVD) of the observed data or,

equivalently, eigen-value decomposition (EVD) of the asso-

ciated data autocovariance matrix. The SVD solution traces

its origin to the fundamental problem of L2-norm low-rank

matrix approximation [3], [4].

It is well known, however, that L2-norm subspace decom-

position is sensitive to the presence of outliers in the given

data set (erroneous measurements that are way out of line in

value compared to correctly measured nominal data). On the

other hand, absolute-value (L1) calculation puts significantly

less emphasis on extreme errors than squared-value (L2) ex-

pressions. Motivated by this notion, recently there has been

an arguably small but growing interest in pursuing L1-norm

based approaches to deal with the problem of faulty measure-

ments in training in subspace signal processing and principal-

components design [5]-[18].

Given any data matrix X ∈ R
D×N of N signal samples

of dimension D, the computation of the L1 principal compo-

nent of the data by maximum L1-norm projection is NP-hard
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jointly in N, D as shown in [1], [2]. However, when the sig-

nal dimension D is fixed with D ≤ N –which is arguably of

more interest in signal processing applications– the L1 prin-

cipal component can be computed in polynomial time with

complexity O(N rank(X)), rank(X) ≤ D, as presented in [1],

[2].

Still, when the data dimension D (and/or data record size

N ) is relatively high, the optimal algorithm may be unsuit-

able for practical implementation due to its exponential in D
complexity. In this work, we present a new low-complexity

sub-optimal algorithm for the computation of the L1 princi-

pal component of any data matrix X ∈ R
D×N . Convergence

(stopping in finite number of steps) to a fixed point with com-

plexity O(N3) is established theoretically. Statistically (em-

pirically only), globally optimal performance with frequency-

of-occurrence one is observed. Numerical studies in this pa-

per (i) compare the proposed algorithm against the optimal in

computing the L1 principal component of arbitrary data ma-

trices and (ii) test the proposed algorithm with applications in

the fields of dimensionality reduction and direction-of-arrival

(DoA) estimation to demonstrate effectiveness of data repre-

sentation and DoA estimation when the principal component

is acquired from corrupted data.

2. EXISTING ALGORITHMS TO COMPUTE THE
L1-PRINCIPAL COMPONENT

The problem of computing the L1 maximum-projection

principal component of a real-valued data matrix X ∈
R

D×N , D ≤ N , can be mathematically formulated as the

problem of finding

rL1 = argmax
r∈RD×1, rT r=1

∥∥rTX∥∥
1
. (1)

Below, we review the current state of the art in optimal and

sub-optimal algorithms for computing an L1 principal com-

ponent.

2.1. Optimal Algorithm

Recently, Markopoulos et al. [1], [2] presented the only

known optimal algorithm for computing the L1 principal

component of X. In [1], [2], it was shown that if

bopt = argmax
b∈{±1}N×1

bTXTXb, (2)
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then the optimal L1 principal component is given by

rL1
=

Xbopt

‖Xbopt‖2 . (3)

A direct way to solve (2) is to exhaustively search over all

2N antipodal binary vectors of size N × 1. Clearly, even

for moderate values of N , finding the optimal solution via

exhaustive search becomes quickly infeasible.

Indeed, the problem is NP-hard jointly in N,D [1], [2].

However, for fixed data dimension D ≤ N (a case of engi-

neering interest), [1], [2] presented an optimal algorithm that

solves (2) with polynomial complexity in the data record size,

O(N rank(X)). Still, moderate to large values of rank(X) ≤
D (and N ) can easily make the polynomial algorithm unsuit-

able for practical implementation.

2.2. Sub-optimal Algorithms

In [5] and [7], the L1 principal component was sub-optimally

computed via coupled optimization or alternating maximiza-

tion until convergence, respectively. Both algorithms can be

seen to yield the same identical iteration as follows,

b(i+1) = sgn
(
XTXb(i)

)
, i = 1, 2, . . . . (4)

The above iteration does not guarantee convergence to the

optimal L1 principal component and suffers from noticeable

performance degradation, as will be seen in our numerical

studies section.

Hence, there is still need for a low-complexity algorithm

(suitable for practical implementation) that can compute the

optimal L1 principal component for moderate to high dimen-

sional data matrices X with high accuracy.

3. BIT-FLIPPING COMPUTATION OF THE L1

PRINCIPAL COMPONENT

In this section, we develop a low-complexity algorithm to

calculate the L1 principal component of a given data matrix

X ∈ R
D×N (D ≤ N ) . From (2), (3), we observe that

the core challenge in computing the L1 principal component

lies in the efficient calculation of the binary vector that max-

imizes the quadratic form in (2). In that effort, we propose a

new algorithm that finds the binary vector that maximizes the

quadratic form in (2) (empirically with highest probability)

and then computes the L1 principal component through (3).

The proposed algorithm for finding a near-optimal solu-

tion to the problem in (2) has two steps: (i) We obtain an

initial binary vector; and (ii) perform optimal iterative single-

bit-flipping (SBF) to obtain a final binary vector. The devel-

oped iterative greedy SBF procedure updates any given binary

vector to the best binary vector possible in quadratic value via

single bit flipping per iteration. The idea is reminiscent of bit

flipping algorithms in the channel coding literature [19].

Next, we describe in detail the SBF algorithm. Given a

data matrix X and an initial binary vector b, the SBF algo-

rithm iteratively produces a sequence of binary vectors where

each one differs from the immediately previous and follow-

ing vector only in a single bit position. That is, the kth bit

vector in the sequence is obtained by a single-bit-flip to the

(k − 1)th bit vector. At each iteration, we choose to flip the

bit that results in the highest increase of the quadratic value in

(2).
Now, we discuss how to efficiently identify the bit to flip

in a binary vector bk at the kth iteration step of the algorithm.
The associated quadratic value can be algebraically written as

bkT
XTXbk= Tr(XTX) +

∑
i

2bki

{∑
j>i

bkj (X
TX)i,j

}
. (5)

In view of (5), changing the ith bit bki in bk will change the

quadratic value by

α
(k)
i � ±4 bki

{∑
j �=i

bkj (X
TX)i,j

}
. (6)

Therefore, if (6) is negative, changing bki to −bki will increase

the quadratic value in (5) by |αk
i |. It is apparent that flip-

ping the bit with the most negative contribution will offer the

biggest increase in the quadratic value in (5). On the other

hand, flipping a bit that corresponds to positive contribution

term will decrease the objective value.

In the context of formal convergence analysis, from (6)

we observe that an ith bit flip corresponding to αk
i > 0 will

decrease the quadratic value in (2). Hence, if αk
i ≥ 0 ∀i ∈

{1, · · · , N}, there is no single bit flip that will increase the

quadratic value and the SBF algorithm terminates. Knowing

the termination condition for the SBF algorithm, the obvious

question at this point is whether the termination condition will

ever be met. We can answer the question in the affirmative by

considering that (i) the binary quadratic form maximization

in (2) has a finite upper bound and (ii) at every iteration of the

SBF algorithm the quadratic value increases ensuring conver-

gence of the SBF algorithm in a finite number of iterations.

Having described the SBF algorithm and established con-

vergence in finite steps for any given initial binary vector b,

we focus now on initialization. We begin by looking at the

following motivating example. Consider the case where the

matrix XTX can be well approximated by a rank-1 matrix,

i.e. by the L2 principal component of XTX. Mathematically,

under rank-1 approximation we write

XTX � λrL2rL2

T � X̃

where rL2
∈ R

N is the L2 principal component of XTX.

Under rank-1 approximation, the optimization problem in (2)

is solved by

bopt = argmax
b∈{±1}N

bT X̃b = sgn
(
X̃(:, i)

)
∀i = 1, · · · , N.

Accordingly, we decide to initialize the SBF algorithm -in

parallel or serially- to each of the N̄ ≤ N distinct binary

vectors given by the sign of each column of matrix XTX.
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Once, upon convergence of the N̄ parallel or serial

searches, the final decision for the binary vector that solves

(2) is obtained, we compute the L1 principal component of

X via the linear operation in (3). The complete details of the

proposed algorithm in direct implementation form are given

in Fig. 1.

Algorithm: L1-Principal Calculation

1: Input: XD×N data matrix

2: [B]:,n ← single bit flipping
(
X, sgn([XTX]:,n)

) ∀n
3: c ← argmaxi [B

TXTXB]i,i
4: Return: r̂L1 ← X[B]:,c/‖X[B]:,c‖2

Function: single bit flipping
1: Input: XD×N and b ∈ {±1}N
2: Repeat:

3: αi ← bi

(∑
j �=i bj [X

TX]i,j

)
∀i ∈ {1, . . . , N}

4: (v, p) ← minimum(α)
5: if v < 0, then bp ← −bp; else, EXIT
6: Return: b

Fig. 1: Fast computation of the L1 principal component via

greedy single-bit-flipping (SBF).

4. COMPUTATIONAL COMPLEXITY

In the sequel, we find the computational complexity of the

developed algorithm for the calculation of the L1-principal

component of an XD×N data matrix. Let M̄ be the maximum

number of steps required for the SBF algorithm to converge

among all N̄ ≤ N initializations.

Given any one of the initial binary vectors b (sign of one

column of XTX), the computational cost for calculating α
(1)
j

has complexity O(N2). Finding the minimum among α
(1)
j is

of complexity O(N − 1). Hence, the dominant complexity of

the first step of the SBF algorithm is O(N2).
Assume that the i′th bit has been flipped in the first iter-

ation of the SBF algorithm. The computational complexity

to calculate α
(2)
j ∀j 	= i′ (because α

(2)
i′ > 0) in the second

step of the SBF algorithm is O(N − 1). Calculating α
(2)
j and

finding the minimum is O(N−1). Hence, the dominant com-

plexity in the second step of the SBF algorithm is O(N − 1).
Assume that the i′′th bit has been flipped in the second

iteration of the SBF algorithm. We can prove (the proof has

to be omitted due to lack of space) that, if the ith bit in bk

is flipped in the (k + 1)th iteration to obtain bk+1, then the

ith bit may be flipped again only after the (k + 3)th iteration.

We conclude that the i′ and i′′ bit will not change at the third

iteration of the SBF algorithm. Then, the computational com-

plexity to calculate α
(3)
j ∀j 	= i′, i′′ in the third step of the

SBF algorithm is O(N −2). O(N −2) is also the cost to find

the minimum among α
(3)
j . Hence, the dominant complexity

of the third step of the SBF algorithm is O(N − 2).
Going one more step ahead, assume that the i′′′th bit has

been flipped in the third iteration of the SBF algorithm. The

computational complexity to calculate α
(4)
j ∀j 	= i′, i′′, i′′′ in

the fourth step of the SBF algorithm is O(N − 3), O(N − 2)
to calculate αj for j = i′, and O(N−2) to find the minimum.

Hence, the dominant complexity of the fourth step of the SBF

algorithm is O(N − 2). The complexity of all the rest of the

iterations until convergence remains O(N − 2).

In light of the above analysis, the overall complexity of

the complete SBF-based procedure is given by O(N2) +
O(N − 1)+O((M̄ − 2)(N − 2)). Per Section V, empirically

always M̄ ≤ N or we simply bound the SBF algorithm at

M̄ = N . Then, the total computational complexity for the

Algorithm in Fig. 1 is O(N̄N2) < O(N3).

5. EXPERIMENTAL STUDIES

In this section, we first carry out a comparative experimental

study on the computation of the L1 principal component of

arbitrary matrices by the proposed algorithm. We continue on

with applications to dimensionality reduction and direction-

of-arrival (DoA) estimation problems in the presence of erro-

neous outlier values/sporadic jammers.

Experiment 1 - Numerical Evaluation. We generate ar-

bitrary data matrices X ∈ R
5×25 filled in with independent

Gaussian realizations of mean zero and variance ten. In Fig.

2(a), we evaluate and compare the proposed algorithm and the

algorithm in [5] (equivalent to the algorithm in [7]) in terms

of objective value degradation per the L1 metric in (1). In par-

ticular, we plot the empirical cumulative distribution function

(CDF) of the performance loss event in %-scale (probability

that degradation of less than x% is experienced). We conclude

that the proposed algorithm finds the optimal L1 principal

component with empirical frequency of occurrence one. For

the same set of generated data matrices, in Fig. 2(b) we eval-

uate empirically the CDF of the iteration termination index of

the developed algorithm under the proposed and arbitrary ini-

tialization. As expected, the proposed algorithm on average

converges quite faster when initialized with sgn([XTX]:,n)
as opposed to arbitrary initialization.

Experiment 2 - Data Dimensionality Reduction. We

generate a data-set X = [x1,x2, . . . ,xN ] of N = 100
two-dimensional observation points drawn from the nominal

Gaussian distribution N
(
02,

[
4 10
10 29

])
. In Fig. 3(a), we

plot the generated data points on the 2-D plain and calculate

and plot the L2 (by standard SVD) and L1 (by the proposed

algorithm) principal component of the data. We note the great

similarity of the two principal components, L1 and L2. Then,

we “contaminate” our nominal data with four outlier mea-

surements depicted by red dots in Fig. 3(b) and recalculate

the L2 and L1 principal component of the contaminated data

set. It is striking, in this illustration, how poorly now the L2

principal component represents the nominal data and how re-

sistant to the outliers the L1 principal component calculation

is.
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Fig. 2: Empirical CDF of (a) performance degradation of L1 principal component calculation algorithms and (b) SBF iteration

termination index under proposed and arbitrary initialization.
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Fig. 3: L2 and L1 principal components calculated over (a) clean and (b) corrupted data.
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Fig. 4: MUSIC principal-component direction-of-arrival esti-

mation.

Experiment 3 - Direction-of-Arrival Estimation. We con-

sider a uniform linear antenna array of D = 10 elements. The

array collects N = 20 snapshots of a single binary Bernoulli-

equiprobable signal m ∈ {±1} with amplitude A, coming at

an angle of arrival θ1 = −40◦ in the presence of white com-

plex Gaussian noise n,

xn = Amn sθ1 + nn, n = 1, · · · , 20, (7)

where sθ1 is the array response vector. The signal-to-noise

ratio is set at SNR = 6dB. We assume that two arbitrary

measurements (among the twenty available) are corrupted by

two jammers operating at angles θJ1
= −1◦ and θJ2

= 44◦

with SNRJ1,2
= 15 dB. The resulting corrupted observation

set is called XCOR ∈ C
10×20 and transformed in real-domain

to X̃COR =

[
Re{XCOR}, −Im{XCOR}
Im{XCOR}, Re{XCOR}

]
∈ R

20×40. Then, we

compute: (i) The real L2 principal component of X̃COR de-

noted by rL2
; (ii) the complex L2 principal component of

XCOR denoted by cL2
; (iii) the robust R1 principal compo-

nent of X̃COR per [18], denoted by rR1
; and (iv) the proposed

real L1 principal component of X̃COR denoted by rL1
.

We then perform in Fig. 4 MUSIC-type [20] DoA estima-
tion using the spectrum function

Pq(θ) =
(
Trace(s̃Tθ (I− qqT )s̃θ)

)−1

,q ∈ {rL2 , rR1 , r̂L1 , ĉL2}
where s̃θ is the concatenated real array response matrix [21]

for the real-valued principal-component cases (i), (iii) and (iv)
and the standard complex array response vector for case (ii).
It is, again, most interesting to observe how much less reac-

tive to the presence of the outlier jammers in the data set is the

calculated L1 principal component compared to the conven-

tional L2 approaches or the robust rotational-invariant princi-

pal component of [18].
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