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ABSTRACT

In this paper we study parameter estimation for α-stable
distribution parameters. The proposed approach uses a Pois-
son series representation (PSR) for skewed α-stable ran-
dom variables, which provides a conditionally Gaussian
framework. Therefore, a straightforward implementation
of Bayesian parameter estimation using Markov chain Monte
Carlo (MCMC) methods is feasible. To extend the series
representation to practical application, we provide a novel
approximation of the series residual terms, which exactly
characterises the mean and variance of the approximation and
maintains its structure. Simulations illustrate the proposed
framework applied to skewed α-stable data, estimating the
distribution parameter values.

Index Terms— Poisson series representation, condition-
ally Gaussian, residual approximation, α-stable distribution
parameter estimation, Markov chain Monte Carlo

1. INTRODUCTION

Empirical evidence of many real-world processes, which ex-
hibit jumps and asymmetric behaviour, does not support the
assumption of an underlying Gaussian distribution. For this
reason α-stable distributions have gained significant impact
and became present in a wide range of application areas,
including radar processing, telecommunications, acoustics
and econometrics [1, 2]. Most presented works concentrate
on a symmetric α-stable law and are not flexible enough
to deal with asymmetric behaviour. In the presence of
symmetric stable noise, Godsill and Kuruoǧlu [3, 4] intro-
duced Monte Carlo Expectation-Maximisation (MCEM) and
MCMC methods, which are based on the Scale Mixtures
of Normals (SMiN) representation of stable distributions.
A method for inference in models with symmetric Paretian
disturbances was proposed by Tsionas [5]. Kuruoǧlu [6] ad-
dressed positive α-stable probability distributions, providing
an analytical approximation based on a decomposition into a
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product of a Pearson and another positive stable random vari-
able. Bayesian inference for stable distribution parameters
by exploiting a particular representation involving a bivariate
density function was introduced by Buckle [7].

Our aim is to simplify inference in α-stable models by
making use of powerful auxiliary variable representations
of α-stable random variables [8, Chapter 1.4, page 28]. In
particular, we seek conditionally Gaussian representations
allowing for Bayesian parameter estimation using MCMC. In
the symmetric stable case previous works by, e.g., [3], [4] and
[5] demonstrate such a framework, using SMiN. This is in
contrast with the MCMC approach of [7], in which an exact
auxiliary variable approach is proposed, but computations are
difficult because no conditionally Gaussian structure arises.

The original contributions of this paper include a novel
residual method allowing for an exact characterisation of the
mean and variance of the residual approximation (RA), which
are then very well approximated by a Gaussian with moments
matched to the residuals. Additionally, the structure of the
conditionally Gaussian framework is maintained in contrast
to our previous approaches [9, 10]. Moreover, we introduce
the use of the approximated PSR to perform Bayesian MC
inference for α-stable distribution parameters, which cannot
be found in the literature to date.

The paper is organized as follows. In Section 2, we in-
troduce α-stable distributions and state the definition and
the PSR of an α-stable random variable. In Section 3, we
present our residual approximation approach. In Section 4,
we discuss inference for α-stable distribution parameters via
MCMC. In Section 5, we present results of our work, and in
Section 6, we conclude the paper.

2. α-STABLE LAW AND SERIES REPRESENTATION

2.1. α-Stable Distribution

The α-stable family of distributions Sα(σ, β, µ) is identified
by means of the characteristic function [8]:

E[exp(itX)] (1)

=

{
exp(−σα|t|α[1− iβsign(t) tan(απ2 )] + iµt), α 6= 1

exp(−σ|t|[1− iβ 2
π sign(t) ln |t|] + iµt), α = 1,
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while closed-form density functions do not exist in general.
The four parameters are given by α ∈ (0, 2], which measures
the tail thickness; β ∈ [−1, 1] termed the skewness parame-
ter; σ > 0 and µ ∈ R denote the scale and location parameter,
respectively.

2.2. Poisson Sum Representation for Random Variables

The general series representation for random variables (r.v.)
as given in [8, page 28, Theorem 1.4.5] states that

∞∑
i=1

(
Γ
−1/α
i Wi − EW1k

(α)
i

)
, (2)

k
(α)
i =

{
0, 0 < α < 1
α
α−1 (i

α−1
α − (i− 1)

α−1
α ), 1 < α < 2

(3)

converges almost surely to a Sα(σ, β, 0) r.v. with

σα =
E[|W1|α]

Cα
, β =

E[|W1|αsignW1]

E[|W1|α]
, (4)

where Cα = 1−α
Γ(2−α) cos(πα/2) ; Γi are arrival times of a unit

rate Poisson process; {W1,W2, ...} are some independent and
identically distributed (i.i.d.) random variables with finite ab-
solute αth moment, 0 < α < 2, α 6= 1. The α = 1 spe-
cial case is omitted here due to space constraints. Equation
(2) gives us the possibility of choosing the Wi as i.i.d. nor-
mal distributed, Wi ∼ N (µW , σ

2
W ), whereby β and σα as in

(4) can be obtained by matching µW and σW values numeri-
cally. This leads us to a conditionally Gaussian form for the
Sα(σ, β, 0) distributed random variable X:

X|{Γi}∞i=1 ∼ N (µX , σ
2
X) (5)

:= N

( ∞∑
i=1

µW (Γ
−1/α
i − k(α)

i ), σ2
W

∞∑
i=1

Γ
−2/α
i

)
.

3. RESIDUAL APPROXIMATION

Our novel approach to approximating the residual series terms
is designed to keep the structure of the PSR, where µW ap-
pears as a factor in µX , and σ2

W appears as a factor in σ2
X , see

equation (5). Since we approximate the residuals of the mean
and variance of the conditionally Gaussian framework, the
RA is referred to as the Gaussian approximation of moments
approach (GAMA). {Γi}i≥1 is defined as a unit rate Poisson
process satisfying the properties, on any interval [c, d],

|{Γi : Γi ∈ [c, d]}| ∼ Poisson(d− c) for d > c (6)

and given the number of Γi in [c, d], each Γi is uniformly and
independenlyt distributed on [c, d],

Γi
i.i.d.∼ U([c, d]). (7)

With d going to infinity we will account for all residual terms
in the PSR from c to∞.

We approximate the residual terms (R1, R2) in the sum-
mations of the mean and variance of the conditional frame-
work,

X|{Γi}Mi=1

approx.∼ N
(
µWm,σ

2
W s
)
, (8)

where

m :=

M∑
i=1

Γ
−1/α
i +R1, s :=

M∑
i=1

Γ
−2/α
i +R2, (9)

by a bivariate Gaussian distribution,N (µR,ΣR), which takes
account of the correlation between R1 and R2. Note that the
number of summation terms M is a random variable itself,
defined as M = |{i : Γi < c}|. The residuals R1 and R2 are
expressed as the limits of

R
(d)
1 : =

∑
i:Γi∈[c,d]

Γ
−1/α
i −

∑
n:Γn∈[0,d]

k̃(α)
n , (10)

R
(d)
2 :=

∑
i:Γi∈[c,d]

Γ
−2/α
i (11)

as d → ∞. In a next step the number of terms in the sums
is approximated by the expectation E[|{Γi : Γi ∈ [c, d]}|] =
d− c and E[|{Γi : Γi ∈ [0, d]}|] = d to compute

µR := lim
d→∞

[
E[R

(d)
1 ]

E[R
(d)
2 ]

]
=

[
α

1−αc
α−1
α

α
2−αc

α−2
α

]
(12)

and

ΣR := lim
d→∞

[
Var[R

(d)
1 ] Cov[R

(d)
1 , R

(d)
2 ]

Cov[R
(d)
2 , R

(d)
1 ] Var[R

(d)
2 ]

]

=

[
α

2−αc
α−2
α

α
3−αc

α−3
α

α
3−αc

α−3
α

α
4−αc

α−4
α

]
. (13)

4. INFERENCE FOR α-STABLE DISTRIBUTIONS
VIA MCMC

The parameters of interest are α, σ and β. Given the sam-
ples X := {Xn}Nn=1, we aim for the posterior of the la-
tent variable set Γ := {{Γi,n}Mi=1}Nn=1, the variables µW and
σW , as well as the residual approximations R := {Rn =
(R1,n, R2,n)}Nn=1.

4.1. Marginal and conditional distributions

Considering that our conditionally Gaussian framework in-
cluding the GAMA for the RA exhibits a certain structure,
we explore possible simplifications and improvements with
regard to the following inference section first.

Suppose there are N i.i.d. samples

Xn ∼ Sα(σ, β, 0) for n = 1, . . . , N.
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We make use of the conditionally Gaussian framework for the
α-stable vectorX and write

p(X|µW , σW ,Γ, α)

=

N∏
n=1

N

(
Xn

∣∣∣∣∣
∞∑
i=1

(
µWΓ

−1/α
i,n − k(α)

i

)
, σ2
W

∞∑
i=1

Γ
−2/α
i,n

)

=((2πσ2
W )N/2

N∏
n=1

√
sn)(−1) (14)

× exp
{
−
(
A(µW −B/A)2 + C −B2/A

)
/(2σ2

W )
}
,

where

A =

N∑
n=1

mn
2

sn
, B =

N∑
n=1

Xnmn

sn
, C =

N∑
n=1

Xn
2

sn
. (15)

Applying the GAMA, we approximate mn, sn as in (9). In
the following, we aim for a straightforward Gibbs sampler
[11] for µW and σ2

W . Their joint conditional distribution can
be rewritten as a composition

p(µW , σ
2
W |X,Γ,R, α)

= p(µW |X, σW ,Γ,R, α)p(σ2
W |X,Γ,R, α). (16)

Taking (15) and a uniform prior on µW and σW , we obtain
the Gaussian full conditional distribution

p(µW |X, σW ,Γ,R, α)

∝ p(X|µW , σW ,Γ,R, α)p(µW |σW ,Γ,R, α)

= N
(
B/A, σ2

W /A
)
. (17)

Next, we derive the conditional distribution for σ2
W . With the

proportionality

p(µW , σ
2
W |X,Γ,R, α) ∝ p(X|µW , σW ,Γ,R, α)

we obtain

p(σ2
W |X,Γ,R, α)

= p(µW , σ
2
W |X,Γ,R, α)p(µW |X, σW ,Γ,R, α)−1

∝ IG
(
N − 3

2
,

1

2

(
C − B2

A

))
, (18)

where IG denotes an inverse gamma distribution.
Finally, marginalising µW and σ2

W gives

p(X|Γ,R, α) ∝ p(X|µW , σW ,Γ,R, α)

p(µW |X, σW ,Γ,R, α)p(σ2
W |X,Γ,R, α)

∝ Γ((N − 3)/2)

((C −B2/A)/2)
(N−3)/2

(2π)(N−1)/2
√
A
∏N
n=1

√
sn
,

(19)

where Γ(.) denotes the gamma function. Note that the above
marginal distribution gives a relation between Γ,R, α and the
given set of dataX , which can be used for making joint con-
ditional samples from µW and σ2

W .

4.2. MCMC implementation

The parameters µW and σW can be sampled straight away ac-
cording to the available joint conditional distribution, which
can be written as the product of a Gaussian and an inverse
gamma distribution as derived in (17) and (18).

To sample the stability parameter α, we choose the
marginalised conditional distribution with a uniform prior
on α to obtain the proportionality

p(α|X,Γ,R) ∝ p(X|Γ,R, α), (20)

where p(X|Γ,R, α) as in (19). Then, the acceptance prob-
ability for the Metropolis-Hastings (M.-H.) sampler [12] is
computed as

ρ(α, α′) = min

(
1,
p(X|Γ,R, α′)q(α|α′)
p(X|Γ,R, α)q(α′|α)

)
, (21)

where α is proposed from q(α′|α) = N (α, σ2
α) with some

variance σ2
α.

As for the α parameter, we can update the latent variables
Γ and R using M.-H. sampling. Setting the proposals to be
the priors q(Γ′n|Γn) = p(Γn) and q(R′n|Rn) = p(Rn), the
corresponding acceptance probabilities result in

ρ(Γn,Γ
′
n) = min

(
1,
p(Xn|Γ′n,Rn, µW , σ

2
W , α)

p(Xn|Γn,Rn, µW , σ2
W , α)

)
= min

(
1,
N (Xn|µ′Xn , σ

′
Xn

)

N (Xn|µXn , σXn)

)
(22)

combined with the subsequent M.-H. step for the residual
terms, which are accepted with probability

ρ(Rn,R
′
n) = min

(
1,
p(Xn|Γn,R′n, µW , σ2

W , α)

p(Xn|Γn,Rn, µW , σ2
W , α)

)
= min

(
1,
N (Xn|µ′Xn , σ

′
Xn

)

N (Xn|µXn , σXn)

)
. (23)

Alternatively to the above presented M.-H. samplers we can
use rejection sampling to obtain samples for Γ andR. The re-
jection sampler is expected to be slower than the M.-H. sam-
pler, since it proposes samples until one is accepted in each
iteration. On the other hand, it provides samples from the ex-
act full conditional while the M.-H. sampler might need some
period to converge.
For the set Γ we sample Γn = {Γi,n}Mn

i=1 for the n-th obser-
vation from the full conditional distribution using rejection
sampling with the envelope function,

p (Γn|Xn,Rn, µW , σW , α) ∝ N
(
Xn

∣∣µXn , σ2
Xn

)
p (Γn)

<
(
2πσ2

WR2,n

)−1/2
p (Γn) .

(24)
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Residuals are updated using the same scheme as for the set
Γn with the bounding envelope function

p(Rn|Xn, {Γi,n}Mn

i=1 , µW , σW , α)

<

(
2πσ2

W

Mn∑
i=1

Γi,n
−2/α

)−1/2

p (Rn|α) . (25)

For large observations the MCMC sampler might suffer from
bad mixing or high rejection rates, since a very small value
of Γ1,n is required to generate a large value of mn. For these
cases additional samplers have been developed. These rely on
the near-deterministic relation m2

n ≈ sn for large data points
and allow for a joint move for the auxilary variables m,Γi
and (R1, R2) leading to higher acceptance rates. A detailed
describtion is omitted here due to space constraints (for a re-
view see [13]).

5. NUMERICAL RESULTS

In order to validate the introduced inference methods for the
α-stable distribution parameters α, β and σ, we generate 500
observations from some α-stable distribution, Sα(σ, β, 0),
under the use of the Chambers-Mallows-Stuck [14] sampling
method and run the according samplers for 10,000 iterations.
We choose the starting points for α, µW and σW to be well
away from the true values. Based on the traceplots of the
sampled parameters in our studies we note that convergence
seems to be attained when allowing for a burn-in period of
5,000 iterations. Thus, only the last 5,000 samples are used
for the histrograms of the marginals of the parameters and the
autocorrelation functions (ACFs).

We give an examplary simulation for a fairly heavy-tailed
stable distribution with α = 0.8. Skewness and scale are set
to β = −0.84 and σ = 1.71, respectively, which corresponds
to the parameter values α = 0.8, µW = −1 and σW = 1 in
terms of the approximated PSR. (α, µW , σW ) are initialised
with (0.4,−3, 3). We choose the Gibbs sampler to include a
M.-H. step for the set of Γs and residuals (R1, R2) for each
observation as presented in (22) and (23).
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Fig. 1. Inference for the parameter α. Left: Histogram from
the MCMC output. The true value is marked by the vertical
line. Right, top: MCMC sampled parameter value α. The true
value is marked by the horizontal line. Right, bottom: ACF
as a function of lag.

Figures 1 and 2 show the MCMC sampled parameter val-
ues for α, µW and σW on the right-hand side with the ACFs

below. On the left-hand side we see the unimodal histograms
centred around the true values. With the MCMC samples
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Fig. 2. Inference for the parameters µW and σW . Left: His-
tograms from the MCMC output. The true values are marked
by the vertical lines. Right: MCMC sampled parameter val-
ues µW and σW with the ACFs as functions of lag below each.
The true values are marked by the horizontal lines.

for the parameters α, µW and σW of the PSR we obtain
the missing paths for the distribution parameters β and σ by
reparametrising according to (4). The resulting traceplots,
ACFs and histograms are shown in Figure 3. As with the
parameters µW and σW , the samples for β and σ lead to uni-
modal histograms centred around the true values. The sample
means yield the estimates α̂ = 0.8, β̂ = −0.84 and σ̂ = 1.32
with standard deviations 0.01, 0.04 and 0.04, respectively.
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Fig. 3. Inference for the parameters β and σ. Top: MCMC
sampled parameter values β and σ. The true values are
marked by the horizontal lines. Bottom: Histograms from the
MCMC output. The true values are marked by the vertical
lines.

6. CONCLUSIONS

We have achieved satisfactory results for parameter estima-
tion for an α-stable distribution applying a MCMC sampler,
which is based on our conditionally Gaussian framework in-
cluding the PSR and a novel RA method. The presented
framework could serve as a basis for future research, when
including our work in various models and applications.
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