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ABSTRACT

We present practical, experimental results for a system, driven by
a particle filter, that dynamically steers a space surveillance sensor
to track and search for resident space objects. In contrast to tradi-
tional Kalman-filter-based trackers, this system can exploit sched-
uled observations where the target is not found within the field of
view. Furthermore, real-time observation-evaluation enables the sys-
tem to immediately respond to these events by conducting a limited
search. We describe the system and report the results of a recent field
trial using a computer-controlled Raven-class electro-optical sensor
to track objects using two-line element sets (TLEs) of various ages.
Even for quite old TLEs - in some cases over six months old - the
system demonstrates successful, automatic reacquisition.

Index Terms— Particle filters, Space Situational Awareness, In-
telligent sensors

1. INTRODUCTION

More than five decades of space-faring has resulted in a large pop-
ulation of man-made objects in Earth orbit [1]. Due to concerns
that these objects may undergo destructive collisions with important
space assets, several agencies endeavour to track as many objects
as possible with the goal of maintaining Space Situational Aware-
ness [2]. Nonetheless, some of these objects are too difficult to
routinely observe or are perturbed too unpredictably to be tracked
effectively and may on occasion become lost [3, 4].

Unless it is observed frequently, an object’s state estimation er-
ror grows with time because of perturbations from imperfect mod-
elling of the orbital dynamics and for active spacecraft, manoeuvring
and station-keeping [5]. Gaussian recursive filtering techniques are
commonly used [5–8] to obtain a value for this error bound by esti-
mating the covariance of the state error p.d.f. This value is used to
determine how often an object is to be observed to ensure the tar-
get has a high likelihood of residing within a sensor’s limited Field
of View (FOV). Nonetheless, a high probability of detection cannot
always be guaranteed and Gaussian techniques do not have the ca-
pacity to store and utilise the information gained when the object is
scheduled for observation but is not found in the FOV.

To capture this information, about where the target is not, we
look to the Particle Filter (PF) [9]. The PF’s point mass p.d.f. repre-
sentation is capable of capturing a regional reduction in probability
resulting from a failure to observe the target. Furthermore, the PF is
capable of representing the shape of the p.d.f. to an arbitrary level of
fidelity which provides valuable insight as to where to look next to
find the target.

This work was supported by AFOSR grant FA9550-10-1-0493.

PFs have become popular over the last decade as a result of re-
cent algorithmic innovations and modern computational power [9,
10]. Nonetheless, the majority of contemporary applications for
tracking focus on sequential update assuming successful observa-
tions continue to arrive with certainty [9,11], or else observations are
discarded completely. Whilst there has been sporadic consideration
of how to update a PF utilising the information gained when a target
is not in the FOV [12–14], to the authors’ knowledge, this princi-
ple has not been applied to the classical statistical tracking problem.
Recently, the authors proposed a method [15] for modifying a PF to
exploit information regarding the presence and the absence of a tar-
get within the FOV to provide a sensor with the intelligence to track
and, if necessary, search for its target. SSA was used as an example
application.

We present the results of an experimental implementation of the
PF-based track-and-search method for controlling an electro-optical
sensor with finite FOV. Several GPS satellites were observed over a
number of nights using a set of initialisation data ranging in accu-
racy. The sensor, a Raven-class telescope, was dynamically steered
toward a region of high probability using the PF’s estimated p.d.f.
which is updated by each observation. If the target is not observed
and tracked, the system uses its estimated p.d.f. to direct the sensor
toward the next most likely region in real time. The experimental
results show that the method is not only effective, but that it is also
practical to implement using existing technology.

In Section 2, we provide an overview of the PF-based track-and-
search method proposed in [15]. The experimental implementation
of the method is described in Section 3. Section 4 presents the re-
sults of this initial experiment and Section 5 offers some concluding
remarks. Section 6 acknowledges the many people without whose
support, the field trial would not have been possible.

2. PF-BASED SENSOR STEERING

Particle Filtering [9, 16, 17] approximates the underlying state
p.d.f. to an arbitrary level of accuracy, using a point mass distribu-
tion. The points are referred to as particles and their corresponding
masses as weights. Each particle xi; i = 1, 2, . . . , N is drawn and
weighted by wi, where

∑N
i=1 w

i = 1, to characterise the posterior
density p(x0:k | z0:k). The discrete-time sequence of state particle
sets and observation vectors from time 0 to k are denoted by x0:k

and z0:k respectively. Hence the approximation of the posterior
distribution is made by

p(x0:k | z0:k) ≈
N∑
i=1

wi
kδ(x0:k − xi

0:k) (1)

where δ(·) is the Dirac delta function.
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In common with other recursive filters, PFs execute both a pre-
dictive time update and a corrective measurement update at each
time step or epoch k. The predictive step results in p̂(x0:k | z0:k−1)
and the corrective step in p̂(x0:k | z0:k). Thereafter resampling may
be necessary to encourage particles to reside in high-likelihood re-
gions and discourage a situation where all but a few particles have
non-trivial weights [9].

The question of how to aim the sensor is not often considered,
it being perhaps tacitly assumed that a good enough track should
be maintained to ensure that the target is always observed when the
sensor is aimed towards it. The principal adaptation here is to give
explicit consideration to how the sensor is steered and to how the
particles and weights should be updated if the object is not within
the FOV. As proposed in [15] in greater detail, this adaptation is
achieved by incorporating a search component between the predic-
tion and measurement-update steps of the classical PF. The search
component comprises of two elements which consist of a sensor
steering routine and a measurement evaluation method.

Time Update

Sensor Steering

Observation

Measurement Evaluation

Measurement Update

k :=
k + 1

Fig. 1. PF sequential update process with search elements

The sensor steering routine utilises an objective function J(Ψ),
to determine the most appropriate sensor pointing angles. The steer-
ing routine is incorporated immediately proceeding the PF time up-
date step to ensure p̂(x0:k | z0:k−1) is computed prior to the eval-
uation of steering parameters Ψ, such as a set of proposal pointing
angles. Utilising p̂(x0:k | z0:k−1), the objective function may eval-
uate Ψ with metrics such as p.d.f. variance reduction or the num-
ber and weight of particles in the FOV. Hence, in Fig. 1, the steps
shaded in blue represent the actions of a traditional Kalman-filter-
based tracker, to which we explicitly add consideration of the steps
shaded in red: sensor steering and measurement evaluation.

The measurement evaluation method occurs prior to the PF up-
date step to inform the filter how it should treat the latest observation.
The measurement evaluation is based on performance parameters, Ω
which may include information such as association confidence and
inclement weather detection. These parameters are collected during
the observation enabling the system to evaluate if the target was in
the FOV, compute the probability of Type I & II errors occurring dur-
ing the measurement and thereafter select an appropriate proposal
density q(·) to apply during the measurement update. If the target
is observed in the FOV, q(·) should bolster the particle weights sur-
rounding the target. If the target is not observed, the weights will
be reduced to discourage further observation of this region of the
p.d.f. In either case, the estimated probability of Type I & II errors
may be used to appropriately weight the particles in the FOV. In cir-
cumstances where certain other error conditions arise, such as when

tk
Obs 1

Undetected

tk+1
Obs 2

Undetected

tk+2
Obs 3

Detected

tk+2
Resample

Target

Sensor 
FOV

Particles With 
Reduced Weight 

Particles With 
Increased Weight 

Approximate 
Orbit

Noisy 
Measurement

Fig. 2. Depiction of the PF-based search strategy

cloud obstructs visibility, observations should be dismissed entirely.
The iteration of this process, as shown diagrammatically in

Fig 2, enables the filter to judiciously select a new pointing angle
based on the previous observation, irrespective of whether the target
was located in the FOV. As a consequence the filter is capable of
dynamically steering the sensor to automatically track and search as
required. If the p.d.f. is well conditioned such that the sensor has a
high likelihood of seeing the target, the system will track the target.
If by chance the target is not found in the FOV, the system has the
capability to execute a directed search until it achieves reacquisition.

3. EXPERIMENTAL METHOD

3.1. System Architecture

Implementation of the sensor control strategy, as described in [15]
and reviewed in the previous section, required the integration of
a number of disparate systems. The primary control program
named Space PARticle Search Evaluation (SPARSE) was devel-
oped in MATLAB. SPARSE monitors and controls all aspects of the
search-track strategy. In addition to implementing the modified PF,
SPARSE employs physical models including sensor, planetary, lu-
nar, solar illumination and space object orbit propagation models for
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Fig. 3. Architecture of experimental system

target visibility prediction and to obtain the information necessary
to run the modified PF.

SPARSE is designed, but not limited, to interface with Raven
class electro-optical equipment, to which controlled access was gra-
ciously offered by the US Air Force Research Laboratory (AFRL) to
implement the experiment as part of an ongoing collaboration. The
Raven class system comprises of a telescope, a computer-controlled
mount, astrometry software capable of measuring a target’s obser-
vation angles with a standard deviation of one arcsecond as well as
camera and mount-control software. The high-level test architecture
is shown in Fig. 3. The numbering indicates the order in which in-
formation is passed throughout the system in a dynamic loop.

3.2. System Configuration

At the beginning of a loop, SPARSE applies its physical models to its
latest object state estimates to determine if any objects are currently
visible to the sensor. Thereafter, the list of visible objects is used
by SPARSE to choose its current target according to programmable
criteria. For this experiment, a target was chosen at random. After
propagating the target’s particles to the current observation epoch,
SPARSE employs the sensor steering routine to produce the steer-
ing commands to be sent to the camera and mount control software.
Whilst the authors have assessed a range of objective functions to
steer the sensor, the most effective function was chosen for presen-
tation in this paper. The objective function chosen to produce the
results presented in Section 4, evaluates a discrete set of pointing
angles constrained to align the sensor’s bore-sight with each of the
PF’s particles. The ith particle is selected by evaluating which of
the N pointing angles maximises the likelihood of detection, as es-
timated by the particle distribution. The resulting objective function
is described by,

J
(
Ψi
)
=
∑
s∈Si

ws
k−1, (2)

where Si is the set of indices for particles that will fall within the
sensor’s FOV when the sensor is aimed at the ith particle.

Once the telescope is steered and the images returned, the as-
trometry software performs astrometric correlation on the images to

Table 1. GPS satellite target list for experiment
US Cat. ID Name

26360 NAVSTAR 47 (USA 150)

32711 NAVSTAR 62 (USA 201)

25030 NAVSTAR 44 (USA 135)

35752 NAVSTAR 64 (USA 206)

22014 NAVSTAR 26 (USA 83)

32260 NAVSTAR 60 (USA 196)

obtain precise pointing angles. In addition, it evaluates the obser-
vation performance metrics Ωk and returns the results to SPARSE.
The primary performance metrics returned to SPARSE includes a
level of data association confidence concerning any objects within
the FOV and a subjective assessment of any occlusion due to in-
clement weather, according to the number of stars visible in each
image.

Once SPARSE is supplied with Ωk, it awards each observation
with one of the following three states:

1. WITHIN FOV - the target was observed in the FOV,

2. OUTSIDE FOV - the observation is valid but the target was
not observed in the FOV,

3. INVALID - the probability of Type I & II errors is too high.

If an observation is classified as WITHIN FOV, a proposal density
resulting in a classical PF Update step is calculated [15]. The particle
weights are scaled according to

wi
k ∝ wi

k−1p
(
zk | xi

k

)
, (3)

which results in an increase in relative particle weights and/or par-
ticles around the observation, scaled by the assumed observation
noise. An OUTSIDE FOV results in a proposal density that nulli-
fies all weights of the particles within the FOV, such that

ws
k = 0; ∀s ∈ Si. (4)

The INVALID state is awarded in the event reliable information can-
not be obtained regarding the presence or absence of the target within
the FOV. As a result, the filter is not updated and the observation is
discarded as though it was never performed.

3.3. Test Procedure

With the cooperation of AFRL at Maui, under the leadership of
Dr. Kim Luu and with the support of Pacific Defence Solutions
(PDS), a field trial was conducted on 22–27 October, 2013. The
trial made use of a Raven-class telescope at Kihei. To test the ability
of the proposed method to reacquire objects that are temporarily
lost, Two-Line Elements (TLEs) of various ages were used as prior
information. Older TLEs yield less accurate information about the
current position of an object and so are expected to trigger search
behaviour more often. The aim is to see whether a track can be re-
acquired even with quite old TLEs. Since regularly updated orbital
element sets and truth data were desirable for the test, GPS satellites
were used as the targets. The objects that were used to produce
the results presented in Section 4 are listed in Table 1 using their
USSTRATCOM catalogue identification number. TLEs for each
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object were obtained from [18] that were approximately 0, 50, 100,
150 and 200 days old.

Once the TLEs are loaded into SPARSE, SPARSE uses its in-
ternal SPG4 propagator [19] to independently decode each TLE and
turn them into state particles with equal weight. The particles are
then propagated forward in time to the first observation epoch.

In accordance with the method proposed in [15], each object is
propagated with sufficient process error to accommodate the dynam-
ics left unmodelled by the SGP4 propagator. For this experiment,
whilst it was anticipated that each object should experience similar
levels of perturbation, it was desirable to learn how the system would
behave when the process error of some of the objects is inflated. For
this reason, the particles for every second object, with respect to Ta-
ble 1, were supplied with at least 10 times more process error than
was necessary for robust tracking.

Each set of particles is used independently to aim the electro-
optical sensor. Each object and each TLE was scheduled one set of
five contiguous observations each night. The result of each observa-
tion affected in real-time how the sensor was pointed during the next
observation.

4. RESULTS

Table 2 displays the results of running the experimental system over
a period of 5 nights. Operational constraints limited sensor avail-
ability such that there was not always enough time to observe every
historical TLE each evening. This is indicated by the blank squares
in Table 2. In spite of these constraints and periods of cloud cover
causing invalid observations, many examples of target reacquisition
were recorded. Scanning left to right along the rows of Table 2, it
is seen that there are 15 instances in which the target was initially
outside the FOV (red) but was eventually reacquired (blue) through
the automatic search conducted by SPARSE.

Table 2 shows a clear correlation between the age of the TLE
and the number of observations necessary to observe or reacquire a
target. There is also a noticeable increase in the number of days nec-
essary to reacquire targets with inflated process error. The extreme
case is object 32260 whose TLEs of 100 days or older contained too
much error to allow reacquisition in the time allowed. Nevertheless,
in most cases, the systematic search is able to reacquire the target
and then consistently track the object through the remaining sched-
uled observations.

5. CONCLUSION

The results of the field trial demonstrate the ability of a modified par-
ticle filter to dynamically control a sensor to track and search for tar-
gets under surveillance. Unlike conventional tracking systems that
would in most of the test cases classify the object as lost, SPARSE
used subsequent observations to search and in many cases reacquire
the target in a judicious manner.

Whilst not all targets were reacquired for all TLEs, the authors
believe that, had the trial lasted a little longer and encountered fewer
interruptions, the few remaining objects may have been reacquired
and tracked.

In conclusion, we have demonstrated a practical system for the
dynamic steering of space sensors which not only tracks RSOs but
automatically reacquires objects that are temporarily lost. Remark-
ably, these preliminary results suggest it is feasible both theoreti-

Table 2. Observation States Recorded During Field Test

0.8 H H H H H H H H H H I I I I I I I I I I H H H H H 1 0.8 H H H H H H H H H H I M R H H M I I M I M R H H H 1

49.7 M H H H H H H H H H H H H H H I I I I H H H H H 1 1 49.7 M R H H H H H H H H H H H H H H H H H H 1 1

99.8 M M M M M H H H H H H H H H H H H H H 1 1 99.8 M M M M M M R H H H H H H H H I I 1 1

149.8 M M M M M I I I I I M M M M M I M I I I I I I I I 149.8 M M M M M I I I I I M M M M M

200.0 M M M M I I I I I I I I M M M I I I I I 200.0 M M M M M M M M M M I I I I I I I I I I I I I I I

1.4 H H H H H H H H H H M H H H H H H H H 1 1.4 H H H H H H H H H H H H H H H H H H H H 1

50.2 H H H H H H H H H H H H H H H H H H I I H H H H H 1 50.2 H H H H H H H H H H H H H H H H H H H H I I I I H 1

H 100.6 M M M M M M H H H H H H H H H H H H H 1 1 100.6 M R H H H H H H H H H I H H H H H H H H I I I I I 1 1

150.0 M M M M M M M M M M H H H H H H H H H H H H H H 1 1 150.0 M M M M R H H H H H H H H I I H H H H H 1 1

200.8 I I I M I M M M M M M M M M M H H H H H H H H 1 1 200.8 M M M M M M R H H H H H H H H H H H H H H H H H H 1 1

0.9 H H H H H H H H H H H H H H H H H H H H I I I I I 1 0.9 H H H H H H H H H H H H H H H H H H H H H H H H H 1

50.1 M H H H H H H H H H H H H H 1 1 50.1 H I I I I H H H H H H H H H H I I I I I 1

100.4 M I I I I H H H H H H H H H H I H I I I 1 1 100.4 M M M M M M M R H H H H H H H H H H H H H H H H H 1 1

150.2 M M M H H H H H H H H H H H H H H H H 1 1 150.2 M M R H H H H H H H H H H H H H H H H H H H H H H 1 1

200.0 M M I M M M M M M I M M M M M M M M M M 200.0 M M M M M M M M M M M M M M M M M I I I M M M M M

1.1 H H H H H I I H I H 1 1.1 H H H H H H H H H H I H H H M R I H I H 1

50.0 M H H H H H H H H H H H H H H H H H H H H H H H 1 1 50.0 M M M M M M I I I I M M M M M M M M M M

H 99.6 M M M M M M M M H H H H H H H H H H H 1 1 99.6 M M M M M M M M M M M M M M M M M M M M

149.9 M M M M M M M M M M M M M M M M H H H H H H H H 1 1 149.9 M M M M M M M M M M M M I I I M M M M M M M I I I

199.8 M M M M M M M M M M I I M M M 199.8 M M M M M M M M M M I I I I I

1.1 H H H H H H H H H H H H H H H H H H H H H H H H H 1 1.1 H H H H H H H H H H H L 1

50.0 H H H H H H H H H H H H H H H H H H H H H H H H H 1 50.0 H H H H H H H H H H H H H H H H H H H H H H H H H 1

100.0 M M M M H H H H H H H H H H H H H H H H H H H H 1 1 100.0 M M M M M M M I I I M M M M M I I I M M M M R H H 1 1

149.8 M M M H H H H H H H H H H H H H H H H H H H H H 1 1 149.8 M M R H H H H H H H H H H H H H H H H H 1 1

199.7 M M M M M M H H H H H H H H H H H H H 1 1 199.7 M M M M M M M M M M M M M M M R H H H H H H H H H 1 1

1.5 H H H H H H H H H H H H H H H H H H H H H H H H H 1 1.5 H H H H H H H H H H H H H H H H H H H H H H H H H 1

50.6 M M M M M M H H H H H H H H H H H H H H H H H H 1 1 50.6 M R H H H H H H H H H H H H H H H H H H H H H H H 1 1

H 101.0 M M M M M M M M M M M M M M M M M M M M M M M M M 101.0 M M M M M M M M I M M M M M M M I M M M I I I I I

149.8 M M M M M M M M M M I M M M M M M M M M M M M M M 149.8 M M M M M M M M M M M M M M M M M M M M I I I M M

199.7 M M M M M M M M M M M M M M M M M M M M M M M M M 199.7 M M M M M M M M M M M R H H H H H H H H H H H H H 1 1

Target within FOV 23 15 Target within FOV 21 12

Target outside FOV Tracking Re-acq.ed Target outside FOV Tracking Re-acq.ed

Invalid Observation 77% 71% Invalid Observation 70% 57%

Unable to Schedule Unable to Schedule

2510 15 20 25 5 10 15 20Observation Observation5

35752
Inflated 

Process 

Error

35752

22014 22014

32260
Inflated 

Process 

Error

32260

26360 26360

32711
Inflated 

Process 

Error

32711

25030 25030

Night 5
Cat. ID

TLE Age 

(days)

Search Method: Maximum Likelihood
Cat. ID

TLE Age 

(days)

Search Method: Maximum Particles

Night 1 Night 2 Night 3 Night 4 Night 5 Night 1 Night 2 Night 3 Night 4

cally and practically to routinely reacquire objects using TLEs that
are more than 3 months old.
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