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ABSTRACT

In this paper we introduce a new multiple particle filtering ap-
proach for problems where the state-space of the system is of high-
dimension. We propose to break the space into subspaces and to
perform separate particle filtering in each of them. The two critical
operations of particle filtering, the particle propagation and weight
computation of each particle filter are performed wherever neces-
sary with the aid of parametric distributions received from other
subspaces. The proposed method is demonstrated by computer
simulations and the results show an excellent performance when
compared to other implementations of multiple particle filtering.

Index Terms— particle filtering, state-space models, high-
dimensional systems

1. INTRODUCTION

In many real applications, the systems in question are character-
ized by high-dimensional dynamical models exhibiting highly non-
linear behavior and with ensuing distributions that are distinctly non-
Gaussian [1]. The non-linearity and non-Gaussianity features justify
particle filtering (PF) as the methodology of choice for approxima-
tion of the posterior distributions of the parameters of interest [2].
The obtained approximations of these distributions consist of sim-
ulated samples (particles) drawn by a selected instrumental (impor-
tance or proposal) function and of weights assigned to the particles
calculated by application of Bayes’ rule [3, 4].

The accuracy of PF depends heavily on the choice of the instru-
mental function. The increase in dimensionality of the state-space
creates a formidable challenge to generate particles in regions of
non-negligible probability without an explosion in the number of
particles that have to be sampled. How quickly the number of needed
particles rises depends on the interrelationship of components of
the state-space vector [5]. In [6], it is discussed that although PF
does not avoid the curse-of-dimensionality in general, a carefully
designed particle filter could mitigate it for certain problems. Also,
in a review article on convergence of PF methods, it was claimed
that under mild conditions, the mean square error (MSE) of the fil-
ter is upper-bounded and PF can beat the curse-of-dimensionality as
the rate of convergence is independent of the state dimension [7].
Further, it was maintained that in ensuring a given precision mea-
sured by the MSE, the number of particles may be a function of the
state-space dimension.

Approaches that attempt to keep PF away from divergence in-
clude backtracking PF, which is based on going back to the time
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when the weights of the particles showed low weights and on re-
processing the data [8], and merging PF, where at the measurement
times, linear combinations of particles are taken in order to reduce
the variance of the particle weights [9]. Computer vision is another
area where high-dimensional state-spaces are rampant. There, one
approach for tackling the problem is by partitioned sampling [10].
For example, recently in [11], the problem of tracking human activ-
ity from video sequences was addressed based on ideas from [10]
and using hierarchical particle filters.

In our previous work, we proposed the concept of multiple par-
ticle filtering (MPF) [12, 13]. The state-space is broken into sub-
spaces and in each subspace filtering is performed by separate units.
Therefore, the high-dimensional distribution of the complete state is
divided into smaller dimensional (marginalized) distributions and we
attempt to track these distributions as accurately as possible. To that
end, the particle filters exchange the estimates of their states with
other filters, which are used for particle propagation and for compu-
tation of the weights. It has been reported that the MPF performs
very well in a real time setting of device-free tracking [14, 15], in
cognitive radar networks [16] and in automated tracking of sources
of neural activity [17]. In a very recent advance on MPF, a novel
approach was proposed where rather than exchanging point esti-
mates, a particle filter uses particles from other particle filters that
are necessary for propagation and weight computation of its parti-
cles [18]. The complexity of the proposed method grows linearly
with the number of filters and the benefits are impressive.

In this paper, we further investigate the concept of MPF and pro-
pose an alternative to its implementation. Rather than exchanging
point estimates or sets of particles (non parametric approximations),
a particle filter uses parametric distributions from other particle fil-
ters to carry out its operations of particle propagation and weight
computation. It is important to note that the complexity of the pro-
posed method is minimal since only the parameters of the distribu-
tions are exchanged among filters. We demonstrate the performance
of the new approach with computer simulations.

2. PROBLEM FORMULATION

The dynamical systems of interest are represented by

e =  fo(mio1,ur), state equation 6))

v = fylze,ve),

where t = 1,2,--- represents time index, z; € R% is the d,-
dimensional latent state of the system at time instant ¢, y; € R%
are dy observations made about the system at time instant ¢, fz(-)
and fy(+) are functions that can be nonlinear in their arguments, and
ue € R% and v, € R are noises in the state (of dimension d,,)

observation equation (2)
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and observation (of dimension d,) equations, respectively. The dis-
tributions of the noise terms u; and v; are parametric and known,
even though the parameters of the distributions may be unknown.
The focus is on systems where d, is large.

Based on the given model and the observations of the system
available at time instant ¢, y1.: = {y1,y2, - , Yyt }, the objective is
to obtain the complete information about the latent state x;, which
is given by the filtering distribution, p(z¢|y1:¢). Moreover, the aim
is to estimate p(x¢|y1:+) in a sequential manner, i.e., by computing
p(welyi:e) from p(ze—1|y1:e—1).

3. MULTIPLE PARTICLE FILTERING WITH GAUSSIAN
EXCHANGES OF INFORMATION

In this section, we first briefly summarize the notion of PF and re-
cap its difficulty when dealing with high-dimensional state-spaces.
Then, we describe the concept of MPF and a novel parametric way
of implementing it without incurring explosion in the needed number
of exchanged particles among the different filters.

3.1. Particle filtering and the curse-of-dimensionality

We use the PF methodology for estimating the distributions of in-
terest. We recall that with PF we approximate the distributions of
interest with random measures composed of particles and their asso-
ciated weights. The particles represent possible values of the states
and their weights are probability masses assigned to the particles.
In brief, at time ¢ — 1, the posterior distribution, p(zt—1|y1:t—1), is
represented by the random measure x;—1 defined by
M

v = {aMwl™m} 3

where 2\ and w{™) are the mth particle and weight, respectively,

and M is the total number of particles. Alternatively, we say that the
distribution of interest is approximated according to

(mt—l |y1:t—1)

M
= > w™ o (due), @
me—1 t—1

p@i-ilyra—1) ~ pY

where p™ (zt—1|y1:t—1) is the approximating discrete distribution
and 0_(m) (dz¢—1) is the unit delta measure concentrated at :E,ET{
t—1

With PF we essentially estimate p(z¢|y1.¢+) from the estimate of

p(z¢—1|y1:t—1). More specifically, we first generate particles mgm)
that will represent the support of p™ (x;|y1.:) by using the particles

a:iinf of pM (24—1|y1:+—1) and then compute the weights w™ of

x£m>, thereby completing the description of p™ (x;|y1..). At every
time instant, thus, we implement particle propagation and weight
computation [19]. There is a third step that also needs to be applied
and is known as resampling [5], where we basically remove particles
that have low weights and replicate ones with large weights. With
this step, we prevent the deterioration of the PF with time.

The main reason for the curse-of-dimensionality of PF is the
difficulty in drawing “good” particles in high-dimensional spaces.
One can readily see how the problem arises. Suppose that the space
of interest is a hypercube with side 2 units. Let the important region
where probability mass is significant be an inscribed sphere with
radius 1. In a one-dimensional space, if we draw uniformly, particles
come from the “sphere” with probability one. In a two-dimensional

space it drops to 7/4. In general for a d—dimensional space, the
probability is given by

Pd) = —— . )

Figure 1 displays the
previous function. It is @
clear that with the increase
of d, it becomes extremely

challenging to sample from —w
the parts of the state-space T o
with non-negligible proba- 3

bility masses. Thus, the 7

onus is on devising smart 102
schemes that guarantee the
generation of “good” parti-
cles.

o
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20 30
dimension of the space

Fig. 1. Probability of success.

3.2. Multiple particle filtering

In curtailing the curse-of-dimensionality, we propose to decompose
the state-space into subspaces of small dimensions and run one par-
ticle filter on each subspace and thereby have the particle filters op-
erate in lower dimensional spaces. In mathematical terms, the space
of x¢, {2z, is split into n subspaces, me, it =1,2,--- ,n, where
Qp, = X721 Qa4

As a result of breaking the state-space into subspaces, instead of
estimating the joint posterior, we settle for less, and are interested
in estimating various posteriors of subsets of the states, p(z:,¢|y1:¢),
i =1,2,--- ,n. Thus, with this approach we give up the goal of get-
ting the joint distribution of the state and instead settle for tracking a
set of marginalized filtering distributions. This should not be neces-
sarily viewed as a setback because when we deal with systems with
a very large number of states, it does not even make much sense to
insist on tracking all of them jointly. We also point out that in prob-
lems with a large number of unknowns, one usually exploits the in-
dependence properties of distributions to represent high-dimensional
distributions with lower ones compactly [20]. For example, in a sys-
tem where the dynamic states describe physical quantities related to
geographical locations, as in geophysical systems, states correspond-
ing to locations that are far apart are practically independent of each
other. In problems related to target tracking based on received signal
strength measurements, the targets can be tracked independently for
as long as their spatial separation is big enough.

In most cases of interest, the propagation of the states of the
ith particle filter depends on states of some other filters. Further-
more, the computation of the weights of the particle filter depends
on states of other filters. Thus, the particle filters are coupled in that
they need to exchange information so that they can proceed with ac-
curate sequential estimation of the distributions they are tasked to
track. In our previous efforts [12, 13, 18], we proposed that coupled
filters would exchange either point estimates, higher order moments
or particles when necessary. These approaches could be referred to
as non-parametric multiple particle filters.

3.3. Parametric multiple particle filtering

In this paper we propose an alternative to the non-parametric ap-
proach to MPF. As in the non-parametric scheme, the main hurdle in
the implementation of the multiple particle filter is the propagation
of the particles and the computation of their weights. We propose
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that each particle filter, after obtaining its discrete random measures
of the filtering and predictive distributions at ¢ — 1, computes their
approximation by parametric distributions with parameters ¢; ;11
and ¢;,, ¢, respectively. In other words, we seek parametric distribu-
tions p(xi7t_1|¢if7t_1) and p(zi,¢|¢s,,:) that approximate the fil-
tering (needed for particle generation) and predictive (needed for
weight computation) distributions of x; ;—1 and z;;, respectively,
ie.,

p(@i,e—1|dif,e-1), (6)
P(@i,t|Pip,t)s @)

where the forms of the approximating distributions are known but
their parameters ¢; ;-1 and ¢;,,,+ are unknown. We emphasize that
the approximating distributions are obtained from the filters’ random
measures. This approach is similar to that used in formulating Gaus-
sian particle filtering [21] and Gaussian sum particle filtering [22].
We proceed by way of example. For simplicity, we assume
that the distributions p(z;,t—1|¢i,,:—1) and p( +) are Gaus-
sians. This means that the parameters ¢; ;1 are the mean and co-
variance of x; ¢(—1 given yi.t—1, i.e., /,Liﬁt_landEif,t_l, whereas
¢, ,+ represents the mean and covariance of x;,+ given y1.+—1, i.e.,
,uip,tandEip,t. In brief, and considering that at time ¢ — 1 the ¢th
filter approximates its marginal posterior distribution by the random

(m) (™ " the algorithm d
—1> Wi -1 m:lg g proceeds as

p(mi,tﬂ |y1:t71) ~
p(wi,t|y1:t71) ~

measure x; -1 = {ac
follows:

1. Obtain the filtering distribution Ny (i, 11, %i;.e-1)

We approximate the evaluation of the weights by first drawing
L particles from the approximations of the predictive Gaus-
sian distributions of the filters whose particles are needed. We

form L different sets of such particles 951(:?,1,’ [=1,2,---,L.

Then we evaluate the average likelihood of xETJ ) by

L
m,j . 1 m !
WD & ZZP{y 2, fp)z) @®)
=1

5. Downsampling to M particles

After the computation of the weights, each filter still has M x
J particles. To bring the number of particles from M x J
back to M we propose that one samples one particle from
each set of children (there are M such sets) and assigns to the
drawn particle a non-normalized weight equal to the sum of
non-normalized weights of the particles from the respective
sets of children. The surviving particles and their weights are
used for forming p(x;,¢|y1:¢ ).

We point out that the choice of the parametric distribution may
allow in some cases for closed-form solutions of the computation of
the weights, which should always be favored over the Monte Carlo
computation of them.

4. SIMULATION RESULTS

We evaluated the proposed parametric multiple particle filter for a
system of dimension d,, = 50 generated according to:

Migt—1 = i (m) §T> 1 Tip = TT1t-1+ 3Td, -1 + ULt
m=1 Top = TTop—1+ .3T1e—1 + U2
M T
Yipt-1 = Z {m) ( ET)l Mi,t—l) (335721 —,ui,z—1>
m=1 Tdgt = ATdy,i—1+ 3Tdy—1,0—1 + Udy ¢, )
(m) where u;¢,% = 1,---,d, were independent and identically dis-

2. Propagate particles z; ,” |

A particle is drawn from the set 7"

i1, M = 1,---, M (re-
sampling) and it is propagated .J times. If the propagation of
the particle requires particles from other filters, the ith parti-
cle filter uses the Gaussian approximations of these filters to

generate the needed particles z)

ipyt— 1,1e.,

o7 o (ealaTe D),

where xi ) _, is a particle generated from all the filtering
Gaussian distributions of the other filters and that is needed
for propagation of z;;—1. At the end of this step, the filter
has M x J particles, all with equal weights. These particles
and their equal weights form M (atl t|y1:e—1).

3. Obtain the predictive distribution AV, (,uip,t, E,-M)

M
) _ (m,J)
Hipt = MJ Z Z
m=1 j=1
J
Yipt
m=1 j=1

4. Computation of the weights of xETJ )

. T
MJ Z Z ( o - '“ip’t) (:EE, A - :“ip’f) .

tributed zero-mean Gaussian perturbations with variance 072” =1.
For simplicity, we assumed that there was only one very non-linear
observation per state given by

Ti,t

Yit =€ 2 Vi,

i:]-?"'7dz7 (10)

with v; + being an independent zero-mean Gaussian random variable
with variance 012,1 = 1. We note that there was no coupling of the
observations, and therefore, with the proposed algorithm the ith filter
only needed information from other filters for generation of particles
but not for calculation of weights.

We let the system evolve for 7" = 50 time units and all the fil-
ters used the same amount of particles (1, 000) when calculating the
estimate of the state. We compared the following implementations:

e The standard PF (SPF) algorithm that generated 1,000
particles of dimension 50. We denoted this filter as SPF
1x1000x1, where the first index denotes the number of
filters (in this case one), the second index indicates the num-
ber of particles per filter (M = 1,000), and the third index
represents the number of children in the propagation step
J=1).

e The MPF algorithm from [12] where we used 50 filters (one
per dimension) and for each of them generated 20 particles
of dimension 1. To deal with the coupling of the states given
in (9), the filters exchanged the means of their particles that
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Fig. 2. Left: Average MSE of the different methods. Right: Average MSE of various implementations of the new parametric MPF.

were used in the corresponding instrumental function. There-
fore, all the particles of a given filter were propagated using
the same information (mean) from the coupled state. We de-
noted this filter as np—MPF 50x20x1. We point out that
this filter used the same amount of particles as the SPF, a to-
tal of 1,000. However, in order to obtain the approximation
of the marginal distribution of a particular state, it only used
20 particles, so in that respect it was in a clear disadvantage.
Also, it is important to point out that this filter belongs to the
family of non-parametric MPF.

e The MPF algorithm from [18] that used 50 filters, each of
them operating with 20 particles of dimension 1 and with 6
children per particle corresponding to the 6 particles received
by their coupled filters according to equation (9). For exam-
ple, filter 1 used 6 particles from filter 10 for each of its M
particles to be propagated. The required particles from the
other filters were obtained by resampling. At each step, the
number of particles per filter was brought back to 20 using re-
sampling. Therefore, this filter was also using 20 particles for
approximation of the marginal distribution and estimation of
the state. Note that this filter did not need to exchange parti-
cles when calculating the weights of the particles because the
observation equations were decoupled. We denoted this filter
as np—MPF 50x20x4 and it also belongs to the family of
non-parametric MPF.

e The new MPF algorithm that used 50 filters, each of them
operating with 20 particles of dimension 1 and with J = 6
children per particle corresponding to the 6 particles that were
generated according to the parametric distribution received by
the coupled filters according to equation (9). Again, in the
case of filter 1 for instance, to propagate its own particles the
filter used the filtering distribution transmitted by filter 10 to
generate 6 particles for each of its M particles. At each step,
the number of particles per filter was brought back to 20 by
randomly selecting from the J children of each particle one of
them according to their weights. The final weight assigned to
a particle was the sum of the weights of its 6 children. Once
more this filter was only using 20 particles for approximation
of the marginal distribution and estimation of the state. We
also note that when calculating the weights according to (8),
there was no need for exchanging information between the
filters because the observation equations were decoupled. We
denoted this filter as p~-MPF 50x20x4 and it belongs to

the family of parametric MPF.

Figure 2 (left) shows the average mean square error (MSE) of all
the states calculated from 500 runs of the system. It is obvious that
the traditional PF suffers from the large dimension of the state. The
performance of the most basic non-parametric MPF where the fil-
ters exchanged point estimates considerably improved with respect
to the SPF even though the former was using only 20 particles for
approximation of the marginal distributions. The best performance
corresponded to the non-parametric MPF algorithm with the filters
exchanging actual particles. The newly proposed parametric MPF
algorithm performed closely but it is important to remark the sav-
ings in communication of this filter since only the parameters of the
distributions need to be exchanged among the filters as opposed to
sets of particles.

Finally, in Fig. 2 (right) we present a comparison of different
parameter combinations for the new parametric MPF algorithm in
terms of number of particles per individual filter and number of chil-
dren generated per particle. The experiment was run 500 times. For
the considered 50-dimensional problem, we observe that if we dra-
matically decrease the number of particles per filter (M = 4), there
will be a big loss in performance. However, p—MPF 50x20X6
from the previous experiment had almost as good performance as
the other new MPFs that used either more or less children.

5. CONCLUSION

Particle filtering suffers from the curse-of-dimensionality. Namely,
it can be shown that its accuracy critically degrades to the point of
complete failure in high-dimensional state-spaces. In this paper, we
proposed an approach for addressing this problem based on break-
ing the high-dimensional distribution of the complete state-space of
the system into smaller dimensional (marginalized) distributions and
attempting to track these distributions as accurately as possible in a
novel way. The filters in the system exchange parametric distribu-
tions, which are used to perform generation of particles and weight
computation. We demonstrated the proposed approach with com-
puter simulations, which revealed an excellent performance of the
proposed method.
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