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ABSTRACT
In this paper, we extend the multiple model track-before-detect

method to track all possible target combinations at low signal-to-
noise ratios. Given a maximum number of targets, the method
estimates the posterior probability density function of the multi-
target state vector, the corresponding target existence probabilities,
and the probabilities of all possible target combinations. As the par-
ticle filter implementation of this method requires a large number
of particles to achieve high tracking performance, we propose an
efficient partition based proposal function method by partitioning
the multiple target space into a set of single target spaces. We
also integrate the Markov chain Monte Carlo Metropolis-Hastings
method into the particle proposal process to improve sample
diversity. The proposed algorithm is validated by tracking five
targets in very low signal-to-noise ratios (SNRs).

I. INTRODUCTION AND PRIOR WORK

Tracking multiple targets is a very challenging problem, espe-
cially at low SNRs. In addition to recovering data associations
between targets and multiple observations, a process complicated
by low probability of target detection due to low SNRs, operating
in high clutter conditions causes increases in the number of false
alarms. Different multi-target tracking methods were developed,
including multiple hypothesis tracking and joint probabilistic data
association [1] and probability hypothesis density filtering [2];
these methods assume that the targets are highly-observable. Track-
before-detect (TBD) is a method proposed to improve tracking
under low SNR conditions. It uses unthresholded data and a binary
target existence variable into the target state estimation process. As
it can be implemented by a particle filter (PF), it can be shown
to be computationally feasible [3]. A recursive PF-TBD algorithm
for a single target was introduced in [4] using the interactive
multiple model (IMM) [3], [5]. Following this method, the TBD
was used for multiple target tracking [6], [7]. In [8], the TBD was
integrated with the probability hypothesis density filter (PHDF) for
tracking multiple targets (PHDF-TBD). PHDF-based multi-target
TBD algorithms were also developed in [9]–[11]. The poor per-
formance of the PHDF-TBD in [8] was demonstrated for tracking
three well-separated targets, and the use of multiple independent
measurements from multiple homogeneous sensors was proposed
to improve the PHDF-TBD tracking performance [11]. The PHDF-
TBD algorithms in [9], [10] were only demonstrated by tracking
two targets. All these aforementioned methods require an extra
clustering step for track management for the sequential Monte-
Carlo (SMC) based implementation of the PHDF [12].
In [13], we proposed an SMC-based multiple-target multiple

mode TBD approach (MMMT-TBD) method for tracking multiple
targets using different modes to correspond to different target

combinations. This method generalizes the recursive and multiple
model TBD [4], [14] algorithm to track multiple targets while
keeping track of targets entering and leaving the field-of-view
(FOV) at any given time step. In [14], a restrictive example
was provided for tracking a second target that spawns from the
first target; this method does not, however, include all possible
combinations of targets leaving and entering a scene as it does
not have an unambiguous mechanism to track the trajectory of the
remaining targets after one of the targets leaves the scene.
The SMC based implementation of the MMMT-TBD requires

a large number of particles to achieve high tracking performance.
In this paper, we propose a partition based method to improve the
tracking performance of the MMMT-TBD using a smaller number
of particles. The multi-target space is partitioned into a set of single
target spaces to generate proposal particles, and the measurement is
used to select only high likelihood particles from a set of particles
generated from a single target space partition. We also integrate the
MCMC Metropolis-Hastings method [3] into the proposal particle
generation step to reduce sample impoverishment.
This paper is organized as follows. In Section II, we provide

the state and measurement models for the multiple transition mode
multiple target TBD (MMMT-TBD). We develop the MMMT-TBD
in Section III, and we provide its PF implementation in Section IV.
We propose the independent sample partitioning based MMMT-
TBD using MCMC in Section V. Simulation results comparing the
various methods are discussed in Section VI.

II. MULTIPLE TARGET TBD TRACKING MODEL

When estimating multiple target parameters using TBD, the state
model must consider all possible target combinations. In general,
for a given maximum number of targets L, the total number of target
combinations or modes is M =

P
L

�=0 L!/(�!(L− �)!). This model
enables the detection of a target entering the FOV (target birth) or
exiting the FOV (target death) while tracking a different surviving
target. For example, there are 4 possible modes for L =2 targets: (a)
no target is present; (b) only first target is present; (c) only second
target is present; (d) both targets are present. Using the MMMT-
TBD we proposed in [13], we also estimate the mode dynamic state
and the joint probability density function (PDF) of the multi-target
state vector. At time step k, we model the random mode transition
as anM -state first order Markov chainmk ∈ {0, 1, . . . , M−1}. An
(M×M ) state mode transition matrix Φ is constructed assuming
known probabilities PrB,� and PrD,� of � targets entering and exiting
the FOV, respectively. The elements of Φ are calculated based on
the target combinations at time steps (k-1) and k. For example, if
the targets are moving independently, the probability of switching
from mode mk−1 = 1 (one target present) to mode mk =M−1 (all
targets present) is (1 − PrD,1)PrB,L−1.
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As the number of targets present varies for different modes, the
state vector in mode i is represented as x

(i)
k . For example, if the

first and third targets are present in mode i, the multi-target state
vector is x(i)

k = [xk,1 xk,3] where xk,� = [xk,� ẋk,� yk,� ẏk,� Ik,�] is
the state vector of the �th target, (xk,�, yk,�) and (ẋk,�, ẏk,�) are the
two-dimensional (2-D) target position and velocity Cartesian coor-
dinates, respectively, and Ik,� depends on the RCS of the �th target
at time step k. All targets assume the same state space representa-
tion, which, for the �th target, is given as xk,� = f(xk−1,�)+vk−1,�,
where f(·) is the state transition function and vk−1,� is the
modeling error random process with covariance matrix Q.

The measurements include the pre-processed radar cross section
(RCS) return for different range rk,�, range-rate ṙk,� and azimuth
angle θk,� bins. The measurements model is rk,�=((xk,� − xs)

2 +
(yk,� − ys)

2)0.5, ṙk,� = [ẋk,�(xk,� − xs) + ẏk,�(yk,� − ys)]/rk,�,
and θk,� = arctan((yk,� − ys)/(xk,� − xs)), where (xs, ys) is the 2-
D sensor location. Each measurement frame consists of Nr ×Nṙ×
Nθ bins. The range, range-rate and azimuth angle bin resolutions
are denoted by Δr , Δṙ, Δθ , respectively. The ηth bin, η = (a, b, c),
is then centered around a Δr × bΔṙ × cΔθ . The measurements in
all the bins consist of only noise if no targets are present. If a target
is present, the measurements in the bins that are in the vicinity of
this target’s current position consist of both signal and noise. We
consider a point target and a sensor point spread function that can
be approximated by a 3-D Gaussian measurement function that
depends on the state of mode mk at time step k. We also consider
a target indicator function, Ci

� = q, i = 0, 1, . . . M − 1, where q is
1 (or 0) if the �th target is present (not present) in mode i. Based
on this, the measurement equation is given by

z
(η)
k =

8><
>:

LX
�=1

Ci
� h

(η)
k (xk,�) + v

(η)
k , i �= 0

v
(η)
k , i = 0

(1)

with Gaussian h
(η)
k (xk,�) =Ak exp((

aΔr−rk,�

2σr
)2 −(

b Δṙ−ṙk,�

2σṙ
)2 −

(
c Δθ−θk,�

2σθ
)2), Ak = (ΔrΔṙΔθIk,�)/((2π)3/2σrσṙσθ) is the nor-

malized amplitude, Ik,� is a function of the �th target amplitude,
and σr, σṙ, σθ are known spreading control parameters. The noise
samples v

(η)
k in (1) are assumed to be white Gaussian with

zero-mean and variance νk. The overall measurement vector is
given by zk,s = [z

(1,1,1)
k,s . . . . . . z

(1,Nṙ ,Nθ)
k,s . . . z

(Nṙ ,Nṙ,Nθ)
k,s ]T,

zk = {zk,1, . . . , zk,S} is the set of measurements from S indepen-
dent and homogeneous sensors, and Zk = {z1, . . . , zk} represents
all the measurements up to time k.

III. MULTIPLE-MODE MULTIPLE-TARGET TBD

The MMMT-TBD algorithm computes the posterior PDF of
the joint target state vector conditioned on a mode; for mutually
exclusive modes, it can be written as

p(xk,�|Zk) =

M−1X
i=0

Ci
� p(xk,l, mk,i|Zk).

where mk,i represents mk = i (mode mk is i at time step k). The
PDF p(xk,l, mk,i|Zk) is obtained by marginalizing the joint PDF as
p(x

(i)
k , mk,i|Zk) = p(x

(i)
k |mk,i,Zk) Pr(mk,i), where Pr(mk,i) �

Pr(mk,i|Zk). The target state PDF conditioned on mode i is

p(x
(i)
k |mk,i,Zk) =

M−1X
j=0

pj,i(x
(i)
k |Zk) Pr(mk,i|j) . (2)

where pj,i(x
(i)
k |Zk)= p(x

(i)
k |mk−1,j , mk,i,Zk) is the posterior

PDF conditioned on the mode transitioning from j at time k−1
to i at time k, and Pr(mk,i|j) =Pr(mk,i|mk−1,j ,Zk). Using TBD,
pj,i(x

(i)
k |Zk) can be expressed in terms of likelihood ratios as [13]

pj,i(x
(i)
k |Zk) = Lj,i(zk|x

(i)
k ) pj,i(x

(i)
k |Zk−1)/Λj,i

where Λj,i =Lj,i(zk|Zk−1) is a normalization factor ob-
tained by integrating the numerator, Lj,i(zk|x

(i)
k )=1 if

mk = 0, Lj,i(zk|x
(i)
k )=

Q
η λ(z

(η)
k |x

(i)
k ) if mk, mk−1 �= 0,

λ(z
(η)
k |x

(i)
k ) = exp(−Υ

(η)
k (x

(i)
k )(Υ

(η)
k (x

(i)
k ) − 2z

(η)
k /(2νk)),

and Υ
(η)
k (x

(i)
k )=

P
L

�=1 Ci
� h

(η)
k (xk,�). The weights are

computed using Pr(mk,i|j) =Ai,j/(
PM−1

j′=0 Ai,j′), where
Ai,j =Λj,i Φj,i Pr(mk−1,j). The posterior mode probability is
Pr(mk,i)= (

PM−1
j=0 Ai,j)/(

PM−1
j=0

PM−1
i′=0 Ai′,j). The recursive

TBD for one target (L = 1) is a special case of MMMT-TBD [15].

IV. PF IMPLEMENTATION OF MMMT-TBD
Since the measurement model is highly nonlinear, MMMT-TBD

is implemented using 3 PFs that approximate the posterior PDFs
pj,i(x

(i)
k |Zk), p(x

(i)
k |mk,i,Zk) and p(xk,�|Zk) using particles

and weights {x
(j,i,n)
k , ψ

(j,i,n)
k }, n = 1, . . . , Nj,i, {x(i,n)

k , χ
(i,n)
k },

n = 1, . . . , Ni, and {x
(n)
k,� , w

(n)
k }, n = 1, . . . , N�, respectively. The

particles x
(i,n)
0 and weights χ

(i,n)
0 for the ith mode are assumed

to be initialized. At time step k, Nj,i new particles are generated
to approximate the predicted posterior PDF pj,i(x

(i)
k |Zk−1) based

on 3 possible target transitions: (a) if the target in mode i is absent
in mode j, the particles are generated from a uniform distribution
if no prior information is available; (b) if the target is present in
mode j but not in mode i, the particles at time k − 1 are ignored
at time k; (c) if the target is present in modes i and j, the particles
are updated using the state transition model. The particles from all
targets in mode i are concatenated to approximate pj,i(x

(i)
k |Zk−1).

If the targets are moving independently, then the weights for
pj,i(x

(i)
k |Zk) are computed using,

ψ̃
(j,i,n)
k ∝ Lj,i(zk|x

(i)
k )

LiY
�=1

p(x
(j,i,n)
k,� |x(j,i,n)

k−1,� ,Zk)

q(x
(j,i,n)
k,� |x(j,i,n)

k−1,� ,Zk)

where q(·) is the proposal function used to generate the particles.
The weights are normalized by Λ′

j,i =
PNj,i

n=0 ψ̃
(j,i,n)
k to obtain

ψ
(j,i,n)
k = ψ̃

(j,i,n)
k /Λ′

j,i, where Λ′
j,i is the particle approximation

of Λj,i. Given the initial mode probability Pr(m0,i), the mixing
probabilities Pr(mk,i|j) are calculated given the initial mode prob-
ability Pr(m0,i). The posterior PDF p(x

(i)
k |mk,i, Zk) in Equation

(2) is then approximated as

p(x
(i)
k |mk,i,Zk) ≈

M−1X
j=0

Nj,iX
n=1

χ̃
(j,i,n)
k δ(x

(i)
k − x

(j,i,n)
k ) ,

where χ̃
(j,i,n)
k =Pr(mk,i|j)ψ

(j,i,n)
k . The number of particles repre-

senting p(x
(i)
k |mk,i,Zk) is the sum of particles from all modes
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that transition to mode i. To avoid an exponential increase in
particles, the weights are sorted and the Ni highest weights and
corresponding particles are selected. The sorted weights are then
normalized and resampled to obtain χ

(i,n)
k . The mode probabilities

are computed by substituting Λ′
j,i for Λj,i. The mode probability

when no targets are present is obtained using Pr(mk,0)= 1 −PM−1
i=1 Pr(mk,i). The particles from all the modes that include

the �th target are combined and weighted according to the mode
probability. The marginal PDF of the �th targets is obtained by
selecting particles corresponding to the �th target from all modes

p(xk,�|Zk) ≈

M−1X
i=1

NiX
n=1

Ci
� Pr(mk,i) χ

(i,n)
k δ(x

(i)
k,� − x

(i,n)
k,� ) . (3)

The number of particles used in (3) is the sum of all particles
from modes that contains the �th target. The weights are then
sorted, and the N� largest weights with corresponding particles are
selected. The sorted weights are then normalized and resampled
to obtain w

(n)
k,� . Finally, the target existence probability of the �th

target is obtained by summing up the relevant mode probabilities
as

PM−1
i=1 Ci

� Pr(mk,i).

V. PROPOSAL USING PARTITIONED SAMPLING
One of the MMMT-TBD drawbacks is the large number of

necessary PF computations, that increases with the number of
targets. In [16], a method was used to estimate the joint multi-
target PDF for tracking an unknown number of targets. Different
proposal methods were considered by partitioning the single target
state space; this resulted in reducing the number of particles
using measurements to generate proposal particles. We propose an
approach using the measurements during particle generation for
the posterior PDF pj,i(x

(i)
k |Zk) and the sequential independent

partitioning (IP) algorithm to exploit the fact that the number of
targets in a mode is known. Under this assumption, the number of
partitions in a mode is the same as the number of targets.
There are five main steps in the sequential independent partition

(IP) algorithm [16], [17]: partition sampling, partition weight
computation, resampling of partition weights, particle weights
computation, and particle resampling. In the previous section, we
approximated the predicted posterior PDF pj,i(x

(i)
k |Zk−1) using

new and surviving particles. Using partitions, the likelihood func-
tion corresponding to the predicted particles for each target in a
mode is computed first, this function corresponds to the partition
weights α

(j,i,n)
k,� , which are normalized and resampled to generate a

new set of predicted particles. Assuming that the targets are moving
independently, the joint proposal can be written as

q(x
(j,i,n)
k |x

(j,i,n)
k−1 ,Zk) =

LiY
l=1

q(x
(j,i,n)
k,� |x

(j,i,n)
k−1,� ,Zk) , (4)

where Li is the number of targets in mode i. Since the proposal
function now depends also on the measurement likelihood, the
proposal functions for a target entering the FOV and surviving are
given, respectively, by [17]

qent(x
(j,i,n)
k,� |x

(j,i,n)
k−1,� ,Zk) = α

(j,i,n)
k,� q(x̃

(j,i,n)
k,� )

qsur(x
(j,i,n)
k,� |x

(j,i,n)
k−1,� ,Zk) = α

(j,i,n)
k,� p(x̃

(j,i,n)
k,� |x

(j,i,n)
k−1,� ) .

Algorithm 1 Partition-based Proposal Sampling Algorithm

Step 1: Predict the particle distribution for pj,i(x
(i)
k |Zk−1)

• New entering target for lth partition x
(j,i,n)
k,� ∼ q(x̃

(j,i,n)
k,� )

• Surviving target: x̃(j,i,n)
k,� ∼ p(x̃

(j,i,n)
k,� |x

(j,i,n)
k−1,� )

• Partition weights: α
(j,i,n)
k,� ∝ p(Zk|x̃

(j,i,n)
k,� )

• Normalize weigths: α
(j,i,n)
k,� = α

(j,i,n)
k,� /

PNj,i

n=1 α
(j,i,n)
k,�

• Resample normalized particles: {x(j,i,n)
k,� , α

(j,i,n)
k,� }

• Concatenate new particles from all partitions: x(j,i,n)
k

Step 2: Compute weights using the proposal function in (4)

ψ̃
(j,i,n)
k = L(zk|x

(j,i,n)
k , mk−1,j , mk,i)/(Nj,i

Q
Li

�=1 α
(j,i,n)
k,� )

The steps of the resulting MMMT-TBD-IP algorithm are summa-
rized in Algorithm 1. In order to reduce the PF sample impov-
erishment, we employ a Metropolis-Hastings (MH) Markov chain
Monte Carlo step (MMMT-TBD-MH) after the proposal particle
generation, as described in [3].

VI. SIMULATIONS
For our simulations, we assume constant velocity target mo-

tion and additive Gaussian process error and noise models. We
consider a (5 × 5) state model matrix f in Section II de-
fined to be 0 everywhere except the diagonal values fii = 1,
i = 1, . . . 5, and f34 = f12 = δt, where δt is the duration be-
tween time steps. The (5 × 5) modeling error covariance ma-
trix Q has entries Q11 =Q33 = q1 δt4/4, Q12 =Q21 = q1 δt3/2,
Q43 =Q34 = q1 δt3/2, Q22 =Q44 = q1 δt2, Q55 = q2 δt, where q1

and q2 are modeling error parameters for motion and intensity,
respectively; all other Q entries are 0. For the simulations, we set
q1 = 0.01 and q2 = 0.001. The FOV is set to 0 m and 16.97 m in the
x and y directions, respectively. The measurements are obtained
from two sensors located at (0, 0) and (0, 16.97) m. A single
measurement frame consists of 48× 48× 48 bins, resulting in bin
resolutions of Δr = 0.509 m, Δṙ = 0.0766 m/s, and Δθ = 0.0334
radians. The measurements range in value between [0 24) m
for range, [-1.8 1.8) m/s for range-rate, and [0 π/2) radians for
azimuthal angles for Sensor 1 and (−π/2 0] radians for Sensor
2. The transmission matrix is selected as PrB,1 = PrD,1 = 0.02. The
spread factors are set to σr = 1.1 m , σṙ = 0.35 m/s, and σθ = 0.06
radians. The measurement noise variance νk is set to 1. The peak
SNR at time step k corresponding to the �th target is calculated as
(ΔrΔṙΔθIk,�)

2/((2π)3/2σrσṙσθ)
2 νk). Figure 1(a) demonstrates

the instantaneous peak SNRs for 3 targets that enter and leave the
FOV at different times; this value is sometimes lower than the pre-
determined peak SNR due to the discretization needed to obtain the
measurement bins. In the first simulation, the measurements were
generated at 3 dB peak SNR for 3 targets that enter the FOV at
frames 5, 13, 21 and leave at frames 25, 33, 41, respectively. The
initial positions and velocities for each of the 3 targets are (4.2,
1.2) m and (0.35, 0.70) m/s, (16.2, 2.2) m and (-0.70, 0.15) m/s,
and (1.2, 16.2) m and (0.65, -0.45) m/s, respectively.
In the simulations, after the state and measurement model at-

tributes are selected, the following parameters are chosen. The muti-
target tracking performance is evaluated using the cardinality and
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Fig. 1. Three targets: (a) instantaneous peak SNR; (b) true and estimated trajectories at 3 dB peak SNR; (c) OSPA(16, 2) at 3 dB peak
SNR; OSPA versus (d) process model variance and (e) peak SNR; (f) true and estimated trajectories of 5 targets at 3 dB peak SNR.

localization error obtained from the optimal sub-pattern assignment
(OSPA) metric [18]. The OSPA cut-off parameter value c is set
to c= 16, chosen to be in the same order as the FOV; the OSPA
parameter p= 2. The numbers of particles (Nj,i, Ni and N�) are set
to 500 for all PFs. The number of Monte-Carlo (MC) simulations
run is 30.

Figure 1(b) shows the estimated and true target trajectories
(plotted using solid lines). Note that the estimated target location
deviates initially from the true location; however, the estimate
converges to the true location as more measurements are received.
Figure 1(b) shows the OSPA metric averaged over 30 MC simula-
tions. The cardinality error dominates the OSPA during the onset
of target appearance; thus, there is one frame latency in detecting
a target entering the FOV. On the other hand, targets exiting the
FOV are detected correctly. The localization error is only around
0.1 m.

Using a similar set for the second set of simulations, we
compared the performances of the three multi-target tracking algo-
rithms discussed in the paper, MMMT-TBD, MMMT-TBD-IP and
MMMT-TBD-MH, for various process model noise variance values
q1. The averaged OSPA over all MC simulations is again averaged
across time to obtain a single OSPA value. Figure 1(d) compares
the averaged OSPA for different values of q1. As expected, for
the same number of particles, the averaged OSPA with the IP
method is higher for smaller process model variance values. The
error introduced by the sample impoverishment is improved using
the MCMC steps; the OSPA from the MMMT-TBD-MH algorithm
has the smallest value when compared to that of the other two
methods for all q1. Figure 1(e) shows the OSPA at different peak

SNR conditions. The proposed MMMT-TBD-MH algorithm tends
to fall apart at -3 dB peak SNR as the cardinality error at every
mode transition is very high, in addition to the large localization
errors present.

The third simulation shows tracking results for five targets. The
initial positions and velocities for each of the targets were (2.2, 0.2)
m and (0.28, 0.33) m/s, (12.2, 13.2) m and (-0.38,-0.19) m/s, and
(9.2, 16.2) m and (-0.11, -0.33) m/s, and (2.2, 15.2) m and (0.33,
-0.28) m/s, and (15.5, 1.2) m and (-0.36, 0.36) m/s, respectively.
The entering and leaving frames for each target are 5 & 45 for
Target 1, 11 & 51 for Target 2, 17 & 57 for Target 3, 23 & 63
for Target 4, and 29 & 69 for Target 5. Figure 1(f) shows the true
and estimated trajectories for the five closely-spaced targets at 3
dB peak SNR. The trajectory of Target 5 deviates somewhat at
around (7.8,10) m due to the presence of the other targets, but it
re-converges to the true path after some delay.

VII. CONCLUSION

We derived a partition-based multiple transition mode algorithm
using track-before-detect for tracking multiple targets under low
SNR conditions, and we implemented it using sequential Monte
Carlo techniques. The different transition modes keep track of
targets entering or leaving the FOV, and only the maximum number
of targets needs to be assumed known; this number can be assumed
large, based on the application. The algorithm performs well for a
larger number of targets than was demonstrated in previous works.
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