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ABSTRACT

This paper deals with the problem of estimating expectations of
sums of additive functionals under the joint smoothing distribution
in general hidden Markov models. Computing such expectations
is a key ingredient in any kind of expectation-maximization-based
parameter inference in models of this sort. The paper presents a
computationally efficient algorithm for online estimation of these
expectations in a forward manner. The proposed algorithm has
a linear computational complexity in the number of particles and
does not require old particles and weights to be stored during the
computations. The algorithm avoids completely the well-known
particle path degeneracy problem of the standard forward smoother.
This makes it highly applicable within the framework of online
expectation-maximization methods. The simulations show that the
proposed algorithm provides the same precision as existing algo-
rithms at a considerably lower computational cost.

Index Terms— Hidden Markov models, particle filters, smooth-
ing methods, Monte Carlo methods, state estimation

1. INTRODUCTION

A hidden Markov model (HMM) is a bivariate model consisting of
an observable process {Yt}1t=0 and an unobservable Markov chain
{Xt}1t=0 taking values in some general state spaces Y and X , re-
spectively. Conditionally on the unobserved process the observa-
tions are assumed to be independent with conditional distribution
of Yt depending on Xt only. In this paper we focus on computing
smoothed expectations E[ST (X0:T )|Y0:T ] for additive functionals
on the form

ST (x0:T ) =

T�1X

t=0

st(xt, xt+1), (1)

where {st}t�0 is a sequence of measurable functions on the prod-
uct space X 2. Since the joint distribution of the observed and unob-
served process in an HMM usually belongs to the exponential family,
computing smoothed expectations of the mentioned form is typically
a key ingredient when casting the problem of computing the max-
imum likelihood estimator into the framework of the expectation-
maximization (EM) algorithm; see e.g. [1, chap. 11]. In this paper
we will propose an online algorithm for estimation of such expecta-
tions. In particular, the algorithm can with advantage be combined
with online implementations of EM; see [2, 3, 4, 5].
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2. PRELIMINARIES

Throughout this paper we assume that we are given a fixed se-
quence {yt}t�0 of observations and write, for s  t, ys:t =

(ys, ys+1, . . . , yt) (this will be our general notation for vectors).
Let q(xt�1, xt) denote the transition density of the Markov chain,
g(xt, yt) the observation transition density and � the initial dis-
tribution of the Markov chain. For ease of notation we expunge
the dependence on the observations from the notation and let
gt(xt) = g(xt, yt). In a parameter estimation framework all
these quantities depend on some unknown parameter vector ✓ to be
estimated.

We are interested in the joint distribution �0:T |T of a given set
X0:T of latent states given the corresponding observations Y0:T .
This distribution is called the joint smoothing distribution and is
given by

�0:T |T (dx0:T ) = L

�1
T �(x0)g(x0, y0)

⇥
TY

t=1

q(xt�1, xt)gt(xt)dx0:T ,

where LT is the likelihood of the observations defined by

LT =

Z
· · ·

Z
�(x0)g(x0, y0)

TY

t=1

q(xt�1, xt)gt(xt)dx0:T .

For a function ST let �0:T |T (ST ) =

R
h(x0:T )�0:T |T (dx0:T ) be

the expectation of ST under the distribution �0:T |T .
Throughout this paper we will work with sequential Monte

Carlo methods, or particle filters, to estimate sequentially sequences
of distributions. Particle filters can be described as a way of gener-
ating sequentially, using importance sampling and resampling tech-
niques, particles and associated importance weights {(⇠it,!i

t)}Ni=1

targeting a sequence of distributions. As a key ingredient in our
algorithm we will use particle filters to estimate the flow of filter
distributions �t = �t:t|t using the estimators

�

N
t (dxt) =

NX

i=1

!

i
t

⌦t
�⇠it

(xt)dxt, (2)

where ⌦t =
PN

i=1 !
i
t and �⇠it

(xt) is a unit mass at xt = ⇠

i
t . There

are several algorithms available for producing such sequences of
weights and particles where the most simple one is the bootstrap par-
ticle filter [6], described in Algorithm 1. These algorithms provide
an estimate of �0:T |T as a by-product when looking at the genealogi-
cal trajectories ⇠i0:T of the particles. The resampling operation of the
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algorithm will collapse these trajectories over time, which makes this
method, in its basic form, incapable of estimating the joint smooth-
ing distribution. This problem is known as the degeneracy of the
genealogical tree; see [7] [8, sec 14.3.6] for some discussion.

We will now set focus on estimating ST , �0:T |T (ST ), where
ST (x0:T ) is of the form (1). The quantity ST will be referred to as
a smoothed additive functional.

Algorithm 1 Bootstrap particle filter
1: for i = 1! N do
2: simulate ⇠

i
0 ⇠ �

3: set !i
0  g0(⇠

i
0)

4: end for
5: for t = 0! T � 1 do
6: for i = 0! N do
7: Set Iit = ` w.pr. !`

t/⌦t

8: Simulate ⇠

i
t+1 ⇠ q(⇠

Iit
t , ·)

9: Set !i
t+1  gt+1(⇠

i
t+1)

10: end for
11: end for

3. PREVIOUS WORK

To obtain an estimate of the joint smoothing distribution we work
with the forward-backward decomposition see e.g. [1, sec 3.3.2].
The forward-backward decomposition is based on the fact that the
hidden chain is still Markov when evolving conditionally on the ob-
servations. For this purpose, introduce the backward kernel B�t with
transition density

B�t(xt+1, xt) , �t(xt)q(xt, xt+1)R
�t(x

0
)q(x

0
, xt+1)dx

0 ,

which can be seen as the distribution of Xt conditionally on Xt+1 as
well as the full observation record Y0:T (hence the name backward
kernel). These kernels allows the joint smoothing distribution to be
expressed using the backward decomposition

�0:T |T (dx0:T ) =

T�1Y

u=0

B�u(xu+1, dxu)�T (xT ).

By plugging the particle estimate �

N
t in (2) into the expression of

the backward kernel we obtain the particle estimate

B�N
t
(xt+1, xt) =

NX

i=1

!

i
tq(⇠

i
t, x)PN

`=1 !
`
tq(⇠

`
t , x)

�⇠it
(xt)

of B�t(xt+1, xt), which lead us to the forward-filtering backward
smoothing (FFBSm) estimator [9, 10, 11]

�

N
0:T |T (dx0:T ) =

NX

i0=1

· · ·
NX

iT=1

✓ T�1Y

u=0

!

iu
u q(⇠

iu
u , ⇠

iu+1
u+1 )

PN
`=1 !

`
uq(⇠

`
u, ⇠

iu+1
u+1 )

◆

⇥ !

iT
T

⌦T
�

(⇠
i0
0 ,...,⇠

iT
T )

(x0:T )dx0:T . (3)

When working with additive functionals it is possible to achieve
a forward-only implementation of the FFBSm [2] by introducing the
auxiliary function Tt(xt) ,

R · · · R Qt�1
u=0 B�u(xu+1, dxu)St(x0:t)

such that �0:t|t(St) =
R Tt(xt)�t(dxt). The idea is now to update

Tt using the forward recursion

Tt(xt) =

Z
(Tt�1(xt�1) + st�1(xt�1, xt))B�t�1(xt, dxt�1).

By plugging the particle approximation of the backward kernel into
this recursion we may approximate Tt(xt) by

T N
t (xt) =

NX

i=1

!

i
t�1q(⇠

i
t�1, xt)PN

`=1 !
`
t�1q(⇠

`
t�1, xt)

⇥
⇣
T N
t�1(⇠

i
t�1) + st�1(⇠

i
t�1, xt)

⌘
,

yielding the estimate

SN
T = ⌦

�1
T

NX

i=1

!

i
TT N

T (⇠

i
T )

of ST .
These two algorithms require the normalizing constantPN

it=1 !
it
t q(⇠

it
t , ⇠

it+1
t+1 ) to be computed for each index it+1 =

1, . . . , N by summing over all indices it. As a consequence, each
iteration of these algorithms has an O(N

2
) computational complex-

ity.
Introduce the �-field FN

t = �{Y0:T , (⇠
i
t,!

i
t); 0  t  T, 1 

i  N}. Then the FFBSm estimator can, conditioned on FN
t , be

viewed as a probability distribution on the indices. Consider for t 2
{0, . . . , T � 1} the Markov transition matrix {⇤N

t (i, j)}Ni,j=1 with
elements given by

⇤

N
t (i, j) =

!

j
t q(⇠

j
t , ⇠

i
t+1)PN

`=1 !
`
tq(⇠

`
t , ⇠

i
t+1)

.

A set of particles trajectory being approximately distributed accord-
ing to the smoothing distribution can now be produced by first draw-
ing JT such that P(JT = jT |FN

T ) / !

jT
T and then, recursively

for t = T � 1, . . . , 0, drawing backwards Jt conditioned on Jt+1

according to P(Jt = jt|Jt+1 = jt+1,FN
T ) = ⇤(jt+1, jt). After

this, return (⇠

J0
0 , ⇠

J1
1 , . . . , ⇠

JT
T ) as a sample from the joint smooth-

ing distribution. This algorithm is called the forward-filtering back-
ward simulation (FFBSi) algorithm [12]. As in the FFBSm algo-
rithm we require, when drawing the indices Jt, the normalizing con-
stant

PN
`=1 !

`
tq(⇠

`
t , ⇠

it+1
t+1 ) to be computed. Thus, we are still left

with an algorithm having an O(N

2
) complexity.

However, as found in [11], a faster version of the FFBSi al-
gorithm can be obtained under the rather mild assumption that
there exists a constant q+ such that q(x, y)  q+ for all (x, y) 2
X 2. In this case it is possible to apply an accept-reject sampling
scheme by drawing a candidate J

(k)
t with a probability propor-

tional to !

i
t and then accepting this candidate with the probability

q(⇠

J
(k)
t

t , ⇠

Jt+1
t+1 )/q+. If rejected, a new candidate is drawn. The first

index JT is drawn as before. The expected amount of draws needed
for the accept-reject scheme will, as N tends to infinity, tend to a
constant that does not depend on N . Consequently the computa-
tional complexity of the algorithm will be of O(N) [11]. However,
the FFBSi algorithm can only be implemented in batch mode by first
running the particle filter up to the final time point T and, after this,
sampling the backward chain backwards to the initial time point.
Nevertheless, in the next section we present a novel algorithm that
can be viewed as a forward-only—online—implementation of the
rapid version of FFBSi.
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4. NEW ALGORITHM

Our new algorithm relies on the same decomposition as the forward-
only version of the FFBSm algorithm described above. Given that
we have estimates ˜T N

t�1(⇠
i
t�1) of Tt�1(⇠

i
t�1) for i = 1, . . . , N and

particles and weights {(⇠it�1,!
i
t�1)}Ni=1 estimating the filtering dis-

tribution �t�1, the algorithm first propagates the particle filter one
step resulting in new particles and weights {(⇠it,!i

t)}Ni=1 estimating
the filter distribution �t. For each particle ⇠it we draw K � 1 indices
J

i,k
t according to

P
⇣
J

i,k
t = j|FN

t

⌘
=

!

j
t�1q(⇠

j
t�1, ⇠

i
t)PN

`=1 !
`
t�1q(⇠

`
t�1, ⇠

i
t)
.

The estimator ˜T N
t (⇠

i
t) is then

˜T N
t (⇠

i
t) = K

�1
KX

k=1

✓
˜T N
t�1(⇠

Ji,k
t

t�1 ) + st�1(⇠
Ji,k
t

t�1 , ⇠
i
t)

◆
,

and finally the estimator ˜SN
t of St is given by

˜SN
t = ⌦

�1
t

NX

i=1

!

i
t
˜Tt(⇠

i
t).

In our novel algorithm we need to draw indices J i,k
t from the back-

ward kernel, but by applying the same accept-reject-technique as
for the FFBSi algorithm described above we obtain an algorithm of
computational complexity O(N). Again we require the transition
density of the Markov chain to be bounded by some constant q+
and as in the FFBSi algorithm a candidate backward index is drawn
according to the probability distribution proportional to the weights
{!i

t}Ni=1. As for the FBBSi, the expected number of draws needed
for generating one backward index with this accept-reject scheme
can be shown to converge to a constant that does not depend on N ;
see [11, sec. 2.3].

In our novel algorithm, which is displayed in Algorithm 2, the
number K of sub-samples is a design parameter. Increasing K adds
computational complexity at the gain of better estimation of Tt. In
Figure 1 we illustrate the backward sampling procedure in the cases
K = 1 and K = 2 when N = 3. In the figure the nodes cor-
respond to particles and the arrows correspond to the indices J

i,k
t

drawn in the algorithm for t = 0, . . . , 4 and i = 1, 2, 3. From
Figure 1 it is clear that the case K = 1 implies a particle path
degeneracy phenomenon that is reminiscent with the degeneracy of
the genealogical tree that occurs in the standard particle smoother;
see [7] [8, Sec 14.3.6] for some discussion. To illustrate further
the degeneracy when K = 1 we have estimated the variance of
ST = E[

PT
t=0 Xt|Y0:T ] for K = 1 and K = 2. The outcome

is displayed in Figure 2 where it is clear that the quadratic trend is
present when K = 1 compared to the expected linear trend for this
problem. Therefore we conclude that the value of K should be at
least 2.

5. SIMULATIONS

Simulations comparing the proposed algorithm with the forward-
only version of FFBSm algorithm were implemented on a linear-
Gaussian model and a stochastic volatility model. For both models,
time averaged sufficient statistics S(i)

t /t were computed. Because of
the degeneracy phenomenon discussed above we used consequently
K = 2 in the simulations. In the results we refer to FoS as the

Algorithm 2 Particle-based, rapid incremental smoother (PaRIS)

Require: Particles and weights {(⇠it�1,!
i
t�1)}Ni=1 estimating the

filter distribution �t�1 and { ˜T N
t�1(⇠

i
t�1)}Ni=1

1: Update the particle sample {(⇠it�1,!
i
t�1)}Ni=1 using a par-

ticle filter of choice in order to obtain a weighted sample
{(⇠it,!i

t)}Ni=1 approximating �t

2: for i = 1! N do
3: for k = 1! K do
4: Simulate J

i,k
t ⇠ {!j

t�1q(⇠
j
t�1, ⇠

i
t)}Nj=1 using accept-

reject sampling.
5: end for
6: Set ˜T N

t (⇠

i
t) = K

�1 PK
k=1(

˜T N
t�1(⇠

Ji,k
t

t�1 ) + st�1(⇠
Ji,k
t

t�1 , ⇠
i
t))

7: end for
8: Set ˜SN

t = ⌦

�1
t

PN
i=1 !

i
t
˜T N
t (⇠

i
t)

(a) Using K = 1 (b) Using K = 2

Fig. 1. Genealogical traces corresponding to backward simulation
in the PaRIS algorithm. Columns of nodes refer to different particle
populations (with N = 3) at different time points, with time increas-
ing to the right. Gray-colored nodes are particles that are inactive in
the backward approximation after t = 4 time steps.

forward-only version of FFBSm and PaRIS (particle-based, rapid
incremental smoother) as our proposed algorithm.

The linear-Gaussian model is of form

Xt = aXt�1 + �wWt,

Yt = Xt + �vVt,

where {Wt}t�0 and {Vt}t�0 are two mutually independent se-
quences of Gaussian noise. We simulate data using the parameters
a = 0.8,�w = 0.2, and �v = 1. The simulations comprised up to
T = 10, 000 time points using N = 100 particles for the FoS algo-
rithm and N = 250 particles for the PaRIS algorithm. With these
particle sample sizes, our algorithm was still 50% faster than the FoS
sampler, due to the quadratic complexity of the latter. For this model
we computed the smoothed additive functionals S(i)

t = E[S(i)
t |Y0:t]

for S

(1)
t =

Pt�1
k=0 Xk, S(2)

t =

Pt�1
k=0 XkXk+1. Figure 4 shows

boxplots, based on 100 replicates of each algorithm, of the time
averaged smoothed additive functionals for different values of t, the
stars are the exact values calculated using the Kalman smoother (see
e.g. [1, Chap. 5.2.4]). There is some bias present in both algorithms.
Calculating the root-mean-square error of these algorithms for the
last time point gives us for the FoS algorithm a value of 0.0020 and
0.0013 for S(1)

T /T and S(2)
T /T , respectively, and using the PaRIS

algorithm we get the values 0.0016 and 0.0008, respectively.
To emphasize that just comparing the box-plots dose not provide

the full picture we introduce the measure efficiency as the inverse
variance over computation time. In Figure 6 the estimated efficiency
for S(1)

t is plotted for the FoS and PaRIS algorithms, both using N =

500 particles. As can be seen the PaRIS algorithm has significantly
better efficiency for every time point.

To construct Figure 3 we computed, for all different time points,
the average numbers of draws required in the accept-reject sampling
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Fig. 2. Variance of E[
PT

t=0 Xt|Y0:T ] for K = 1 and K = 2 fitted
to linear and quadratic curves.
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Fig. 3. Average numbers of draws needed in the accept-reject sam-
pling scheme at all different time-points for the linear Gaussian
model.

scheme per particle and plotted these averages in a histogram. We
notice that the total mass of the histogram is contained in the interval
(4.9, 6.0).

The stochastic volatility model is given by the state and obser-
vation equations

Xt = �Xt�1 + �Wt,

Yt = � exp(Xt/2)Vt,

where again {Wt}t�0 and {Vt}t�0 are two sequences of indepen-
dent Gaussian noise. We simulated data using the parameters � =

0.975,� = 0.16, and � = 0.63. Again we considered up to T =

10, 000 time points, but this time N = 250 particles for both al-
gorithms. With this set-up, our algorithm was 5 times faster than
the FoS-implementation. For this model we computed two of the
sufficient statistics S(i)

t = E[S(i)
t |Y0:t] for S

(1)
t =

Pt�1
k=0 X

2
k+1,

S

(2)
t =

Pt�1
k=0 XkXk+1. As it is evident from Figure 5 the perfor-

mance of our algorithm is, despite being considerably faster, on par
with that of the FoS-implementation.

6. DISCUSSION

In this paper we have presented a novel algorithm for efficient
forward-only computation of smoothed additive functionals. The
proposed algorithm has a computational complexity of O(N) which
is a drastic improvement compared to existing algorithms having in
general O(N

2
) complexities. The proposed algorithm performs on

par with the FoS algorithm but is significantly faster. This coupled
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Fig. 4. Results of the simulations for linear and Gaussian model.
The black stars are the exact values calculated using the Kalman
smoother.

with the ease of implementation makes the algorithm highly useful
in practice.

For future work the convergence of the algorithm has to be es-
tablished. The behavior of the algorithm for different values of K
should also be investigated theoretically, especially the transition
from K = 1 to K = 2.
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Fig. 5. Results of the simulations for stochastic volatility model.
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