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ABSTRACT

Adaptive Rejection Metropolis Sampling (ARMS) is a well-
known MCMC scheme for generating samples from one-
dimensional target distributions. ARMS is widely used within
Gibbs sampling, where automatic and fast samplers are of-
ten needed to draw from univariate full-conditional densities.
In this work, we propose an alternative adaptive algorithm
(IA2RMS) that overcomes the main drawback of ARMS (an
uncomplete adaptation of the proposal in some cases), speed-
ing up the convergence of the chain to the target. Numerical
results show that IA2RMS outperforms the standard ARMS,
providing a correlation among samples close to zero.

Index Terms— Monte Carlo methods, Gibbs sampler,
adaptive rejection Metropolis sampling (ARMS).

1. INTRODUCTION

Markov chain Monte Carlo (MCMC) methods generate sam-
ples from a target probability density function (PDF) by draw-
ing from a simpler proposal PDF [1, 2]. The two best known
MCMC approaches are the Metropolis-Hastings (MH) algo-
rithm and the Gibbs sampler [3]. Gibbs sampling produces
samples from multi-dimensional target densities, drawing
each component of the generated samples from the corre-
sponding univariate full-conditional density. The key point
for its successful application is being able to draw efficiently
from these univariate PDFs. The best scenario for Gibbs sam-
pling occurs when exact samplers for each full-conditional
are available. Otherwise, sampling techniques like rejection
sampling (RS) or some variant of the MH algorithm are used
within the Gibbs sampler to draw from complicated full-
conditionals. In the first case, samples generated from the
RS algorithm are independent, but the acceptance rate can
be very low. In the second case, we have an MCMC-inside-
another-MCMC approach. Therefore, the typical problems of
the external-MCMC (long “burn-in” period, large correlation,
etc.) could raise dramatically if the internal-MCMC is not
extremely efficient.
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Automatic and self-tuning samplers, such as adaptive re-
jection sampling (ARS) [4, 5], have been developed to draw
efficiently from univariate target densities. The samples gen-
erated by ARS are independent and the proposal always con-
verges to the true shape of the target, but ARS can only be
applied for log-concave (i.e., unimodal) targets. In order to
overcome this limitation, Adaptive Rejection Metropolis Sam-
pling (ARMS) [6, 7] combines the ARS and MH approaches.
ARMS is a universal sampler that builds a self-tuning pro-
posal (i.e., a proposal automatically constructed and adapted
to the target), but the generated samples are correlated and
the adaptation mechanism of ARMS is uncomplete: in some
cases the proposal does not converge to the target in certain
areas or even in the whole domain [8, 9].

In this work, we present an enhancement of ARMS which
ensures that the sequence of proposals converges to the tar-
get, while maintaining the computational cost bounded (ex-
actly as in ARS and ARMS) with the addition of a simple
control test. We call the novel approach independent A2RMS
(IA2RMS), since the proposal is independent of the current
state and the A2 emphasizes that we incorporate an additional
adaptive control. The new strategy allows us to decouple
completely the adaptation mechanism from the proposal con-
struction (unlike ARMS, whose performance depends criti-
cally on the proposal building approach), thus allowing us
to introduce several examples of simpler construction proce-
dures. Numerical simulations on a Gaussian mixture example
show the effectiveness of the proposed approach.

2. PROBLEM STATEMENT

Bayesian inference often requires drawing samples from
complicated multivariate posterior PDFs, p(x|y) with x ∈
D ⊆ RD. A common approach, when direct sampling from
p(x|y) is unfeasible, is using a Gibbs sampler [3]. At the
i-th iteration, a Gibbs sampler obtains the d-th component
(d ∈ {1, . . . , D}) of x, xd, drawing from the full conditional
of xd given all the information available [10, 11], i.e.,

x
(i)
d ∼ p(xd|x

(i)
1:d−1,x

(i−1)
d:D ), (1)

with the initial vector drawn from the prior, i.e., x(0) ∼ p0(x).
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However, even sampling from (1) can often be compli-
cated. In these cases, a common approach is using another
Monte Carlo technique (e.g., RS or the MH algorithm) within
the Gibbs sampler, drawing candidates from a simpler pro-
posal, π(x). The performance of this approach depends
greatly on the choice of π(x). Thus, adaptive strategies,
where the proposal is updated using the previously generated
samples, are usually preferred. For the sake of simplicity, in
the sequel we denote the univariate target PDF (i.e., the full-
conditional proposal in Eq. (1)) as p(x), and the sequence of
proposals as πt(x) for t = 1, . . . , T . Our aim is designing
a sequence of self-tuning proposals such that πt(x) → p(x)
when t→∞ as fast as possible.

3. ADAPTIVE REJECTION METROPOLIS
SAMPLING (ARMS)

Adaptive rejection Metropolis sampling (ARMS) combines
the adaptive rejection sampling (ARS) and the Metropolis-
Hastings (MH) [2, 3] techniques. It first performs an RS test,
and the rejected samples are then used to improve the pro-
posal PDF, exactly as in the standard ARS. ARMS is sum-
marized in Table 1. The proposal construction approach is
critical for the good performance of ARMS. Let us consider a
set of support points at time t , St = {s1, s2, . . . , smt} ⊂ D,
s.t. s1 < . . . < smt

; the intervals I0 = (−∞, s1], Ij =
(sj , sj+1] for j = 1, ...,mt − 1 and Imt

= (smt
,+∞); and

V (x) = log(p(x)). Moreover, let us denote as Lj,j+1(x)
the line passing through (sj , V (sj)) and (sj+1, V (sj+1)) for
j = 1, ...,mt − 1, with L−1,0(x) = L0,1(x) = L1,2(x) and
Lmt,mt+1(x) = Lmt+1,mt+2(x) = Lmt−1,mt(x). Then, in
[6] a piecewise-linear function Wt(x) is constructed as

Wt(x) = max
[
Lj,j+1(x),min [Lj−1,j(x), Lj+1,j+2(x)]

]
, (2)

for x ∈ Ij = (sj , sj+1] and j = 0, . . . ,mt. Hence, the
proposal PDF, π̃t(x) ∝ πt(x) = exp(Wt(x)), is formed by
exponential pieces. Fig. 1(a) illustrates an example of this
construction. More sophisticated approaches to build Wt(x)
(e.g., using quadratic segments when possible [12]) have been
proposed. However, none of these schemes solves the struc-
tural problem or ARMS that is briefly described next.

Note that, when a sample is rejected by ARMS in the
RS test (this can only happen when πt(x

′) > p(x′)), this
new point is always added to the set St+1 and used to up-
date the proposal, πt+1(x). However, when a sample is ini-
tially accepted by the RS test (as it always happens when
πt(x

′) ≤ p(x′)), the proposal is never updated, regardless
of whether that point is finally accepted in the MH test or not.
This causes the proposal adaptation procedure to be uncom-
plete in some cases (see [8, 9] for a detailed discussion and
an example). For this reason, the performance of ARMS de-
pends critically on the procedure used to build the proposal,
which is not truly independent of the adaptation mechanism.1

1Indeed, in order to obtain satisfactory results with ARMS, the procedure

Table 1. ARMS algorithm.
Initialization:

1. Set k = 0 (chain’s iteration), t = 0, choose an initial
state x0 and support set S0 = {s1, . . . , sm0

}.

Iterations (while k < N ):

2. Build a proposal, πt(x|St), given a set of support
points St = {s1, . . . , smt}, according to Eq. (2).

3. Draw x′ ∼ π̃t(x|St) ∝ πt(x|St) and u′ ∼ U([0, 1]).

4. If u′ > p(x′)
πt(x′|St) , reject x′, set St+1 = St∪{x′} and

update t = t+ 1. Go back to step 2.

5. Otherwise, set xk+1 = x′ with probability

α = min

[
1,
p(x′)min[p(xk), πt(xk|St)]
p(xk)min[p(x′), πt(x′|St)]

]
,

or xk+1 = xk and y = x′ with probability 1 − α.
Set St+1 = St, t = t+ 1 and k = k + 1.

6. If k < N , go back to step 2.

4. INDEPENDENT DOUBLY ADAPTIVE
REJECTION METROPOLIS SAMPLING (IA2RMS)

In this section, we describe a simple and extremely efficient
strategy which allows us to solve the two aforementioned
problems of ARMS. The novel scheme ensures the conver-
gence of the chain to the target distribution and keeps, at the
same time, the computational cost bounded. Furthermore, it
allows us to completely decouple the adaptation mechanism
from the proposal construction, thus allowing us to consider
simpler alternatives for the latter. We call it independent
doubly adaptive rejection Metropolis sampling (IA2RMS),
where the A2 emphasizes that we incorporate an additional
adaptive step to improve the proposal PDF w.r.t. ARMS. The
IA2RMS algorithm is summarized in Table 2. The key point
is the introduction of this new control step (step 5.2), which
allows us to add samples (in a controlled way) inside regions
of the domain where πt(x|St) < p(x).

4.1. Convergence and Computational cost

The new control test is performed using an auxiliary variable,
y, which is always different from the new state, xk+1. This
construction leads to a proposal, πt(x|St), which is inde-
pendent of the current state of the chain, xk. Therefore, the

used to build Wt(x) must fulfill the two requirements described in [9], thus
leading to unnecessarily complex proposal construction schemes.
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Table 2. IA2RMS algorithm.
Initialization:

1. Set k = 0 (chain’s iteration), t = 0, choose an initial
state x0 and support set S0 = {s1, . . . , sm0

}.

Iterations (while k < N ):

2. Build a proposal, πt(x|St), given the set St =
{s1, . . . , smt

}, using a convenient procedure.

3. Draw x′ ∼ π̃t(x|St) ∝ πt(x|St) and u′ ∼ U([0, 1]).

4. If u′ > p(x′)
πt(x′|St) , then reject x′, set St+1 = St ∪

{x′}, update t = t+ 1 and go back to step 2.

5. Otherwise, i.e., if u′ ≤ p(x′)
πt(x′|St) , then:

5.1 Set xk+1 = x′ and y = xk with probability

α = min

[
1,
p(x′)min[p(xk), πt(xk|St)]
p(xk)min[p(x′), πt(x′|St)]

]
,

or xk+1 = xk and y = x′ with prob. 1− α.

5.2 Draw u2 ∼ U([0, 1]). If

u2 >
πt(y|St)
p(y)

,

set St+1 = St ∪ {y}. Otherwise, St+1 = St.
5.3 Update t = t+ 1 and k = k + 1.

6. If k < N , go back to step 2.

convergence of the Markov chain to a bounded target den-
sity is ensured by a theoretical result from [13] (see also [1,
Chapter 8]). Indeed, IA2RMS satisfies the strong Doeblin’s
condition if the target is bounded: in this case the proposal
is bounded and the construction of the tails can always be
chosen adequately (see Section 5 for a brief discusion and
[14] for a rigorous proof concerning an alternative adaptive
method). Moreover, since {πt(x)}+∞t=0 always approaches
the target p(x), IA2RMS satisfies the diminishing adaptation
condition [1, Chapter 8], i.e., the discrepancy between the
proposals πt(x) and πt+1(x) becomes progressively smaller
as t → ∞. Consequently, the probability of updating the
proposal PDF eventually becomes zero, thus preventing the
addition of new support points.

The coding and implementation complexity of IA2RMS is
virtually identical to ARMS, since all the quantities involved
in the ratio of step 5.2 have been previously calculated in steps
4 and 5.1. Thus, no additional evaluation of the proposal and
target PDFs is required. The total number of support points

increases w.r.t. ARMS, although it always remains within the
same order of magnitude, as shown in the simulations. In-
deed, it is important to emphasize that the number of support
points does not diverge: it is kept bounded thanks to the two
control tests, exactly as in ARS and ARMS. This is due to the
fact that both p(x)

πt(x|St) and πt(x|St)
p(x) measure the point-wise

discrepancy between the proposal and the target. As the pro-
posal approaches the target, the two ratios tend to one, and the
probability of adding a new support point vanishes quickly to
zero, as in ARS and ARMS.

5. ALTERNATIVE PROPOSAL CONSTRUCTION

Since IA2RMS improves the adaptive structure of ARMS,
simpler procedures can be used to build the function Wt(x),
thus reducing the overall computational cost and the coding
effort. A first possibility is defining Wt(x) inside the i-th
interval simply as the straight line Li,i+1(x) going through
(si, V (si)) and (si+1, V (si+1)) for 1 ≤ i ≤ mt − 1, and
extending the straight lines corresponding to I1 and Imt−1
towards ±∞ for the first and last intervals. Mathematically,

Wt(x) = Li,i+1(x), x ∈ Ii = (si, si+1], (3)

for 1 ≤ i ≤ mt − 1, Wt(x) = L1,2(x) in I0 = (−∞, s1] and
Wt(x) = Lmt−1,mt(x) in Imt = (smt ,∞). This is illus-
trated in Fig. 1(b). Note that, although this procedure looks
similar to the one used in ARMS (as described by Eq. (2)), it
is much simpler, since it does not require the calculation of in-
tersection points. Furthermore, an even simpler procedure to
construct Wt(x) can be devised from Eq. (3): using a piece-
wise constant approximation with two straight lines inside the
first and last intervals. Mathematically,

Wt(x) = max [V (si), V (si+1)] , x ∈ Ii = (si, si+1], (4)

for 1 ≤ i ≤ mt − 1, Wt(x) = L1,2(x) in I0 = (−∞, s1]
and Wt(x) = Lmt−1,mt(x) in Imt = (smt ,∞). This con-
struction leads to the simplest proposal possible: a collec-
tion of uniform PDFs with two exponential tails. Fig. 1(c)
shows an example of the construction of the proposal using
this approach. Finally, we can also apply the procedure de-
scribed in [15] for adaptive trapezoidal Metropolis sampling
(ATRAMS), even though the structure of this algorithm is
completely different to ARMS. The proposal is constructed
using straight lines L̃i,i+1(x) passing through (si, p(si)) and
(si+1, p(si+1)) directly in the domain of the target PDF, p(x).
Mathematically,

πt(x) = L̃i,i+1(x), x ∈ Ii = (si, si+1], 1 ≤ i ≤ mt − 1, (5)

and the tails are formed by two exponential pieces. Fig. 1(c)
shows an example of a proposal using this approach. Note
that, in all of the previous procedures, the construction of the
tails can be modified in order to reduce the dependence on
the initial set S0 or to adapt to specific classes of targets (e.g.,
corresponding to heavy-tailed distributions).
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Fig. 1. Examples of proposal construction using: (a) the procedure proposed in ARMS [6]; (b) the procedure described in
Eq. (3); (c) the procedure in Eq. (4); (d) the procedure in Eq. (5).

Table 3. Comparison of IA2RMS vs. ARMS adaptive structures. µ̂ ± σ̂: estimated mean ± standard deviation; R̂xx[1]:
auto-correlation at lag 1; D̂π|p(T ): estimate of Dπ|p(t) at t = T ; |PT |: average number of pieces in πt(x) at t = T .

Proposal ARMS IA2RMS
πt(x) µ̂± σ̂ R̂xx[1] D̂π|p(T ) |PT | µ̂± σ̂ R̂xx[1] D̂π|p(T ) |PT |

Eq. (2) 1.648± 0.730 0.396 3.002 91.272 1.623± 0.124 0.004 0.061 123.844
Eq. (3) 1.754± 1.091 0.772 8.052 12.049 1.724± 0.219 0.020 0.253 85.644
Eq. (4) 1.594± 0.230 0.613 6.152 164.188 1.601± 0.095 0.002 0.201 317.536
Eq. (5) 1.567± 0.496 0.708 7.134 37.823 1.601± 0.131 0.005 0.058 92.133

6. NUMERICAL RESULTS

In this section, we compare the performance of IA2RMS and
ARMS on a multimodal target PDF, p̃(x), generated as a mix-
ture of 3 Gaussian densities,2

p̃(x) = 0.3N (x;−5, 1)+0.3N (x; 1, 1)+0.4N (x; 7, 1), (6)

where N(x;µ, σ2) denotes a Gaussian PDF with mean µ
and variance σ2. We consider the four alternative proce-
dures previously described to build the proposal and esti-
mate the mean of p̃(x) (true value, E{p̃(x)} = 1.6) from
the generated samples using both ARMS and IA2RMS.
We also provide an estimation of the linear correlation
among consecutive samples, the number of rejections, the
number of pieces of the proposal, |PT |, and the distance,
Dπ|p(t) =

∫
D |πt(x)− p(x)| dx, between the sequence of

proposals (t = 1, . . . , T ) and the target PDF [16].
In all cases, we consider N = 5000 iterations of the

Markov chain, without removing any samples to reduce
the burn-in period, and an initial support set S0 = {s1 =
−10, s2 = a, s3 = b, s4 = 10} formed by m0 = 4 support
points, where a, b ∼ U([−10, 10]) with a < b. Table 3 shows
the results, averaged over 2000 runs, for ARMS and IA2RMS
respectively. The standard ARMS method corresponds to
the first row of Table 3. Note that IA2RMS always provides

2The comparison of IA2RMS with other MCMC approaches, as well as
its performance for other types of targets (e.g., a heavy-tailed distribution)
can be seen in [9].

better results than ARMS, regardless of the proposal con-
struction scheme. This can be seen by the improvement in the
estimated mean and, most notably, by the large decrease in
the standard deviation of the estimation. We also notice that
the correlation after N iterations is much lower for IA2RMS,
due to the convergence of πt(x) to p(x) almost everywhere,
as evidenced also by the low value of Dπ|p(T ). Indeed,
IA2RMS with the proposal construction procedure of Eq. (5)
provides much better results than the standard ARMS method
(i.e., ARMS with the proposal of Eq. (2)) with the same
computational cost (i.e., with the same number of pieces).

7. CONCLUSIONS

In this work, we have introduced a new adaptive technique
(IA2RMS), which provides an automatic construction of a
sequence of self-tuned proposals that always approaches the
target (unlike ARMS), while keeping the computational cost
bounded. As a consequence, the convergence of the chain is
speeded up w.r.t. ARMS and the correlation vanishes quickly
to zero. Furthermore, IA2RMS also allows us to reduce the
complexity in the construction of the sequence of proposals.
Thus, we have also proposed three simpler procedures to build
the proposal densities. Numerical results show that IA2RMS
outperforms ARMS in terms of estimation accuracy, corre-
lation and convergence of the proposal to the target. Future
work includes testing the performance of IA2RMS on more
complex examples, where it is used within a Gibbs sampler.
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