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ABSTRACT

The bootstrap is a powerful computational tool for statisti-
cal inference that allows for the estimation of the distribu-
tion of an estimate without distributional assumptions on the
underlying data, reliance on asymptotic results or theoretical
derivations. On the other hand, robustness properties of the
bootstrap in the presence of outliers are very poor, irrespective
of the robustness of the underlying estimator. This motivates
the need to robustify the bootstrap procedure itself. Improve-
ments to two existing robust bootstrap methods are suggested
and a novel approach for robustifying the bootstrap is intro-
duced. The methods are compared in a simulation study and
the proposed method is applied to robust geolocation.

Index Terms— bootstrap, robust, regression, geolocation

1. INTRODUCTION

Geolocation describes the task of locating a Mobile Terminal
(MT) in a network of Fixed Terminals (FT) with known loca-
tion. Outliers are present due to Non-Line-Of-Sight (NLOS)
signal paths between MT and FT. Hence, robust estimates
are required. Traditional estimators yield a point estimate,
which, due to the stochastic nature of the process, is inher-
ently stochastic. The bootstrap [1] allows for the estimation
of the distribution of the estimate based on the original sam-
ple. It allows for the extraction of additional information from
a given sample [2]. This is crucial in a practical setting, where
a repetition of the experiment is impractical or impossible.
However, the bootstrap is non-robust, irrespective of the ro-
bustness properties of the underlying estimator. Hence, robust
bootstrap methods are required.

The bootstrap was first introduced by Efron in 1979 [3]
as an alternative to the Jackknife. With increasing compu-
tational capabilities, a wide plethora of variations and appli-
cations emerged [4]. The lack of robustness of the classi-
cal bootstrap was recognized [5] and many robust bootstrap
methods, such as the Stratified Bootstrap [6], the Influence
Function Bootstrap [7] and the Fast and Robust Bootstrap [8]
have been developed. Improvements to two of these methods
are proposed. Furthermore, a new robust bootstrap method,

the Robust Starting Point Bootstrap (RSPB), is presented and
compared in an empirical simulations study. A plethora of
methods for robust geolocation exist ([9], [10] among oth-
ers). These yield point estimates. We demonstrate, how the
RSPB can be utilized to extend these and other regression
based methods to estimate the distribution of estimates.

This paper is organized as follows: Section 2 shows how
geolocation can be described as a robust linear regression
problem. Proposed improvements and a novel robust boot-
strap method are described in Section 3. The application to
robust geolocation and an empirical simulation study are pre-
sented in Sections 4 and 5 respectively.

2. PROBLEM FORMULATION

Geolocation describes the problem of locating a MT within a
network of M FTs with known locations (xFT,i, yFT,i), i =
1, ...,M .

2.1. Robust Geolocation

The geolocation task can be formulated as a regression prob-
lem according to [9]

Y = h(x, y) +U , (1)

where h(x, y) = (h1(x, y), ..., hM (x, y))T is a real, non-
linear vector function describing the relation between the sig-
nal parameter used for the location estimation, the position of
the MT and positions of FT’s. For Time Of Arrival (TOA)
estimation, it is the Euclidean distance between the MT and
respective FT.

The above non-linear regression problem can be approxi-
mated with sufficient accuracy [9] as a linear regression prob-
lem [11], which gives

Y =XTβ +U , (2)

where X ∈ Rp×N and Y ∈ RN×1 are the predic-
tor and response variables, respectively, and U ∼ (1 −
ε)N (0, σ2

eIN ) + εH is the error term. In the application
of geolocation, U is a superposition of low-variance noise,
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which is also present in the LOS case, and high-mean, high-
variance errors caused by NLOS signal paths with probability
ε = pnlos. β is the statistic of interest, i.e. the position of the
MT.

2.2. The MM-Estimate of Regression

The linear approximation of Eq. (1) as Eq. (2) allows for the
estimation of β ∈ Rp×1 through the MM-estimate [12]. It
minimizes the loss function

1

N

N∑
i=1

ρ2

(ri
σ̂

)
= δ. (3)

Here, ri = yi−xi
T β̂ are residuals and σ̂ is a scale S-estimate,

minimizing the M-scale σ̂(β) defined by

1

N

N∑
i=1

ρ1

(
ri

σ̂(β)

)
= b.

The constant b is adjusted to ensure consistency under the
normal model. ρ1 and ρ2 are bounded ρ-functions [11]. ρ1

determines the estimate’s breakdown point, while ρ2 deter-
mines efficiency. Hence, the MM-estimate can be tuned to
be both robust and efficient [12]. The MM-estimate can be
represented through an Iterative Re-weighted Least Squares
(IRLS) fixed-point equation [13]

β̂=

(
N∑
i=1

wi(β̂, σ̂,xi, yi)xix
T
i

)−1 N∑
i=1

wi(β̂, σ̂,xi, yi)xiyi.

(4)
It is crucial in finding the optimal solution of Eq. (2) as

the absolute minimum of Eq. (3).

3. PROPOSED METHODS

3.1. Improved Stratified Bootstrap

It is proposed in [6] to group the sample into a set number of
stratas of equal length based on their residuals ri = yi−xT

i β̂.
This groups potential outliers together and leads to more rep-
resentative bootstrap samples in terms of the proportion of
outliers. Two problems arise, however: the number of stratas
offers a trade-off between robustness and consistency. Espe-
cially for small sample sizes, a large number of stratas results
in significant underestimation of variability. Secondly, even
a large number of stratas does not guarantee that every sin-
gle bootstrap re-sample contains fractions of contamination
below the breakdown point of the underlying estimator. Mo-
tivated by the two drawbacks of the stratified bootstrap in [6],
the following stratification is proposed:

For an estimator of regression with C as the maximum
number of contaminated samples before breakdown, obtain
the stratified sample as follows:

• Step 1. Compute the estimate β̂ based on the original
sample χ = (xi, yi) : i = 1, ..., N .

• Step 2. For every pair (xi, yi), compute the residual
ri = yi−xT

i β̂ and obtain the sorted sample χs, so that
|rs,1| ≤ |rs,2| ≤ ... ≤ |rs,N |.

• Step 3. Obtain the stratas of χ by:

χ1 =(xs,1, ys,1), ..., (xs,N−C , ys,N−C)

χ2 =(xs,N−C+1, ys,N−C+1), ..., (xs,N , ys,N )

By incorporating the breakdown point of the underlying
estimator and allowing stratas of unequal length, robustness is
guaranteed, as long as the original sample contains at most C
outliers. For the MM-estimate with breakdown point εBP =
0.5 and sample of size N = 20, the tuning constant is set to
C = dεBPNe − 1 = 9. The resulting bootstrap procedure
matches the breakdown point of the underlying estimator.

3.2. Improved Influence Function Bootstrap

Robust estimates are characterized by bounded influence
functions [11]. The Influence Function Bootstrap (IFB) [7]
applies this concept to the bootstrap by assigning re-sampling
probabilities based on the Influence Function (IF). By doing
so, potential outliers are assigned small probabilities of ap-
pearing in any bootstrap re-sample.

Assigning smaller re-sampling probabilities to outlying
samples reduces the effective sample size. By sampling N
times with replacement from a sample of effective size Neff ,
variability is underestimated and consistency is not achieved.
This motivates the following improvement to the IFB: Obtain
the effective sample size as

Neff =

⌊
N∑
i=1

wi

⌋
,

where b·c indicates the integer part and 0 ≤ wi ≤ 1 is the re-
sampling weight determined by the IFB. Sample Neff instead
of N times with replacement.

3.3. Robust Starting Point Bootstrap (RSPB)

Robustly estimating β̂ in Eq. (2) translates into finding the ab-
solute minimum of a non-convex loss function, which is de-
termined by the estimator. Both the Fast-MM [12] and Fast-τ
[14] algorithms utilize the fixed-point Eq. (4), which reduces
the loss function in every iteration until convergence to a local
minimum. In the sequel, the Robust Starting Point Bootstrap
(RSPB) is proposed. It is based on the following observa-
tion: For every bootstrap sample χ∗, it is not desirable to find
the absolute minimum of the loss function, but rather a local
minimum close to β̂ and σ̂, the estimates based on χ.

Non-convex minimization problems can generally be di-
vided in two steps:
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• Step 1. Obtain a good candidate point or a number of
candidate points.

• Step 2. Apply an iterative algorithm, which reduces the
respective loss function until the estimate converges to
a solution of Eq. (4).

In the case of the MM-estimate, Step 1. is performed by
a robust, but inefficient S-estimator, while an efficient, but
not necessarily as robust M-estimate solves Step 2. For the
τ -estimate of regression, Step 1. is performed by random
re-sampling, upon which a number of candidate points are
step-wise iterated and eliminated in Step 2. Performing the
full algorithm on every bootstrap sample is both computation-
ally demanding and non-robust as some samples may contain
a larger fraction of contamination than the original sample.

For the RSPB, Step 1. is replaced by Step 1’. for every
bootstrap sample as follows:

• Step 0. Obtain β̂ and σ̂ for the original sample χ
through the full algorithm described above. This is
done only once prior to bootstrapping.

• Step 1’. For every bootstrap re-sample χ∗, choose the
estimate β̂ with scale estimate σ̂ from χ as the only
candidate point for the minimization problem.

• Step 2. Apply an iterative algorithm, which reduces the
respective loss function until the estimate converges to
a solution of Eq. (4) for χ∗ to obtain β̂∗ and σ̂∗.

The above alteration ensures, that for every bootstrap
sample χ∗, the estimates β̂∗ and σ̂∗ converge to a local min-
imum close to β̂ and σ̂, rather than the absolute minimum,
which may be skewed due to over-contamination. This results
in a robust bootstrap replicate β̂

∗
, even if χ∗ is contaminated

past the breakdown point of the underlying estimator.

4. RSPB FOR GEOLOCATION

The RSPB can be applied directly to the linearized regression
based approach to geolocation in Eq. 2 and [9]. Fig. 1 dis-
plays the RSPB distribution estimate (contour plot) of the the
MM-estimate, the MM-point estimate and the true position
of the MT for the LOS case (pnlos = 0). FT’s are located
at (2500, 5000), (1500, 4000), (3000, 4500), (4000, 3500),
(2000, 250) and (1000, 1000).

Fig. 2 displays the RSPB distribution estimate in the
mixed LOS/NLOS case with pnlos = 0.4. The distribution
estimate adapts to the MM-estimate, which, due to the strong
contamination performs slightly worse than in the LOS case.
Nonetheless, the quality of the distribution estimate is com-
parable to the LOS case. Furthermore, unlike the classical
bootstrap, the RSPB distribution estimate inherits the robust-
ness properties of the underlying MM-estimate and is similar
in terms of area to the LOS case.
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Fig. 1. RSPB distribution of location estimate, pnlos = 0,
contour plot in 10% steps
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Fig. 2. RSPB distribution of location estimate, pnlos = 0.4,
contour plot in 10% steps

The distribution estimate was extracted solely through the
RSPB and without additional measurements or assumptions.
Due to moving MT’s and changing environments, this is cru-
cial in the context of geolocation, as a measurement cannot
be repeated under the same conditions.

The distribution estimate shows, that the uncertainty in
horizontal direction is larger than the uncertainty in vertical
direction. The reason for this is the setup of FT’s relative to
the true position of the MT and the structure of outliers in the
particular example.

The additional information can be utilized in a plethora of
ways. In a tracking scenario, distribution estimates from past
measurements can be combined to improve new position es-
timates. Concrete applications are subject to future research.

5. COMPARATIVE SIMULATION RESULTS

In order to assess the robustness of proposed methods and
compare them to existing methods, a simulation study is con-
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ducted on the regression model in Eq. (2) of order p = 1 with
contaminationUi ∼ (1−ε)N (0, σ2

e)+εN (0, κσ2
e). κwas set

to 10000, in order to allow for a wide range of worst case sce-
narios. A total of 10000 MC iterations were run over 10 levels
of contamination ranging from ε = 0 to ε = 0.45, which, for
the MM-estimate and a sample size of N = 20, is the largest
amount of contamination the underlying estimator can han-
dle. In order to reduce statistical variance, the same data set
was used for all methods. Based on the resulting bootstrap
distributions with B = 100 replicates, confidence intervals
(CI’s) with confidence level α = 0.9 were obtained.

The Fast and Robust Bootstrap (FRB) is a well estab-
lished robust bootstrap method ([8], [15], [13]) and is used
as a benchmark, as implemented by the authors of [8].

Fig. 3 displays the Empirical Coverage Probability (ECP)
as the fraction of accurate CI’s, which contain β.
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Fig. 3. Empirical Coverage Probability of discussed methods
over 1000 MC iterations per contamination level

The following observations are made:

• ECP of the Improved Stratified Bootstrap is higher than
the ECP of the Stratified Bootstrap, except for the case
ε = 0.45. This is due to the early breakdown of the
Stratified Bootstrap, which leads to dramatic increase
in CI bias and CI length. These compensate and result
in high ECP. This directly motivates the need for a sec-
ond measure of robustness, discussed below.

• ECP of the Improved IFB is consistently higher than
that of the IFB over all ranges of contamination, espe-
cially for large ε.

• All proposed methods perform on par with the FRB.

The breakdown point of an estimator is defined as the
smallest fraction of contamination in a sample, which can
cause the estimate to give information about the estimated
statistic [11]. For point estimates, the maximum bias curve
[16] is a well established robustness measure. A CI contains
no information about the estimated statistic, if it is either in-
finitely biased or infinitely long. The same methods as plotted

in Fig. 3 are displayed in Fig. 4 in terms of maximum CI bias
and CI length. This is an extension of the classical maximum
bias curve to represent the general definition of breakdown in
the context of CI’s.
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Fig. 4. Maximum CI bias and CI length over 1000 MC itera-
tions per contamination level, same methods as in Fig. 3

The following observations are made:

• While maximum CI length and CI bias of the FRB re-
main bounded over all ranges of contamination, a sig-
nificant increase of both statistics is present.

• The Stratified Bootstrap breaks down after ε = 0.4.
This accounts for the misleading increase in ECP at ε =
0.45 in Fig. 3. The Improved Stratified Bootstrap hence
outperforms the Stratified Bootstrap across all levels of
contamination.

• Maximum CI bias and maximum CI length of all other
methods remain small and bounded over all ranges of
contamination.

6. CONCLUSION

Alterations to two existing robust bootstrap methods were
proposed and their significant positive impact on the quality
of so obtained CI’s was demonstrated. Furthermore, a novel
robust bootstrap, the Robust Starting Point Bootstrap (RSPB)
was introduced and a comparative simulation study was con-
ducted to show that it is competitive to existing methods. The
RSPB was applied to the problem of regression based ge-
olocation to extend point estimates to distribution estimates,
hence extracting additional information from a given sample,
without additional data or assumptions.
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