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ABSTRACT
This paper deals with the linearization of RF power amplifiers
(PAs) using digital predistortion (DPD) technique. One of the
most important constraint on DPD implementation is digiti-
zation of PA output signal needed for identification of predis-
torter model. The bandwidth of this signal may be 3 to 7 times
wider than the bandwidth of the input signal. The sampling
rate required for accurate compensation of out-of-band distor-
tions is thus very high, and has a direct impact on power con-
sumption and implementation complexity of DPD identifica-
tion algorithms on digital processor. In this paper, we propose
a new iterative DPD identification algorithm based on the In-
direct Learning Architecture (ILA) and on subband decompo-
sition of PA output signal. The proposed algorithm converges
to conventional ILA solution with a drastic decrease in re-
quired sampling rate.

Index Terms— Subband Decomposition, Digital predis-
torter, Power Amplifiers, Indirect Learning Architecture, Lin-
earization.

1. INTRODUCTION

PAs usually exhibit nonlinear characteristics when driven to-
wards high efficiency saturation region, which cause spectral
regrowth beyond the signal bandwidth [1]. Waveforms hav-
ing high peak to average power ratio (PAPR) such as CDMA
of OFDM make necessary the linearization of PA to improve
its power efficiency [2, 3].

Digital predistortion (DPD) based on Indirect Learning
Approach stands out as one of the most popular techniques
to linearize PAs [4]. A PA preceded by a predistorter can be
driven more towards the high efficiency saturation region with
less nonlinearity effects [2].

In order to extract the predistorter model, PA output sig-
nal is first translated to an Intermediate Frequency (IF) or to
baseband (Zero IF) and then digitized using an AtoD con-
verter. The required sampling rate for an accurate represen-
tation and thus compensation of nth order intermodulation
products is equal to n.BW , where BW is the RF bandwidth

of the input signal. Complexity, power consumption and re-
quirements related to signal digitization and implementation
of predistorter identification algorithm depend primarily on
the sampling rate. DPD accuracy in conventional ILA is ex-
pected to improve as the sampling rate is increased.

Predistorter architecture allowing to reduce sampling rate
while taking into account high order intermodulation products
has been seldom addressed in the literature. In [5] the au-
thors propose an architecture based on direct learning (DLA)
which allows to undersample the output of the PA, but this ap-
proach is dedicated to a specific predistorter architecture. It
has been demonstrated that undersampling the output of the
PA is not a problem for direct identification [6] and thus for
DLA, while it remains an issue for ILA which in turn exhibits
a lower computational complexity than DLA [7]. Subband
predistortion approaches have also been proposed, [8–10], to
apply different predistorsion functions depending on the sub-
band using either ILA or DLA. But the proposed schemes do
not allow to reduce the sampling frequency of the signal at
the output of the PA.

In this paper we propose an original approach to decom-
pose PA output signal into smaller bandwidth signals and dig-
itize each signal individually with a possibly lower sampling
rate. We propose a new iterative predistorter identification
algorithm based on the ILA architecture and on subband de-
composition of the PA output signal. It will be shown that this
algorithm converges to the conventional ILA solution with a
convergence time which depends on the amount of informa-
tion about PA out-of-band emissions.

The remainder of this paper is organized as follows : First,
after recalling the conventional ILA identification approach,
we present the new DPD structure based on subband decom-
position. In Section 3, we will built arguments on the conver-
gence properties of the proposed algorithm through step-by-
step system transformations. Finally, we present simulation
results in Section 4, followed by a discussion and conclusion
section.
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2. PRINCIPLE OF THE SUBBAND PREDISTORTER

2.1. Regular Postdistorter Architecture

A conventional baseband model of ILA is shown in Fig. 1.
The post-inverse model of PA is first identified and then used
as a predistorter in front of the PA. The main goal is to iden-
tify a set of parameters for the post-distorter block in order to
render the overall system made of the predistorter and PA lin-
ear. The training procedure is required to be repeated several
times until the error e(n) is minimized. If the postdistorter
model is conveniently chosen this algorithm converges and
the energy of the error ||e(n)||2 becomes negligible [11].

����

����� ����

���� ��������
PA

	
�
�

P'

Post-inverse

Pre-inverse: PD

P

Fig. 1. Indirect Learning Architecture

If the post-inverse is modeled as a Memory Polynomial,
then its output can be written as:

zp(n) = F (z) =
∑
k∈K

∑
l∈L

cklz(n− l)|z(n− l)|k, (1)

where F (z) is the nonlinear function of the postdistorter
which is, for MP model, the sum of the nonlinear terms of the
form z(n− l)|z(n− l)|k = zk/2+1(n− l)z∗k/2(n− l). The
sets K and L define the nonlinearities and the memory of this
model. Equation (1) can be rewritten in matrix form:

zp = Z c. (2)

The least Square solution for c which minimizes ‖e(n)‖2 is:

ĉ =
(
ZHZ

)−1
ZHzp. (3)

Identification of ĉ is always an iterative process whatever is
the method used to solve (3) [7]. Each iteration, named “sys-
tem” level iteration, allows the system which is formed by the
tandem connection of the predistorter and the PA to converge
towards a linear system. This happens when the error e(n)
becomes ideally null, which means that zp(n) = x(n) and
thus y(n)/g = u(n), since P = P ′, where g is the linear gain
of the PA.

2.2. Subband Postdistorter Architecture

In this section we present an intuitive explanation of the sub-
band predistorter architecture. In the conventional ILA DPD
system depicted in Fig. 1, we have the equality u(n) = z(n)
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(a) Equivalent ILA architecture after convergence
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(b) Subband architecture for ILA DPD

Fig. 2. Subband DPD

after convergence for a given postditorter model. Thus the in-
put to the postdistorter z(n) has no energy outside the band
B of the input signal u(n), with the following definition:

U(f) 6= 0 if |f | ≤ B and U(f) = 0 otherwise. (4)

So after convergence Fig. 2a is equivalent to Fig. 1, where
HCH and HIM are ideal brick wall filters with zero phase.
Their bandwidth definitions are given by:

|HCH | =

{
1 if |f | ≤ B,

0 else.
|HIM | =

{
1 if |f | > B,

0 else.
(5)

The filters HCH and HIM are represented in the predistorter
(Fig.2a) for the sake of symmetry with the post-distorter and
to mimic the reference block diagram sketched Fig. 1. But
from (4) and (5) HCH and HIM are obviously useless in the
predistorter.

It is seen from Fig. 2a, that the error e(n) can be expressed
as:

e(n) = x(n)− z′p(n) = (x(n)− zIM (n))− zp(n), (6)

which corresponds to the block diagram depicted Fig. 2b.
It is worth noting that HIM could be split into a uniform

filter bank where each filter will be passband filter with band-
width equal to B as shown in Fig. 3:

|HIMp | =

{
1 if (p− 2)B < |f | ≤ pB,

0 else.
(7)
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3. DISCUSSION ON THE SYSTEM CONVERGENCE
BEHAVIOR

In this section we will provide some means to have a bet-
ter understanding about system convergence of the proposed
identification architecture. The postdistorter model that will
be used for this rationale is a memory polynomial (MP) model
(1).

From the previous section we can see that the proposed
identification algorithm behaves asymptotically as the regular
one. Indeed when the system has converged we have y(n) =
g u(n) and then, there is no energy outside B at the input of
the postdistorter (4). Thus Fig. 2a can be seen as equivalent to
Fig. 1. But going from Fig. 1 to Fig. 2a involves modification
of the postdistorter model (1).
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Fig. 4. Transformations of the Postdistorter Architecture

In the sequel of this section we will detail this modifica-
tion, that will be split into different steps. For the sake of
simplicity, but without loss of generality, we will consider the
postdistorter model sketched in Fig. 2b with only the HCH

and HIM3
bands. If the filters are ideal and defined in (5) and

(7), then z(n) = zCH(n) + zIM3
(n) and (1) can be rewritten

as (Fig. 4b):

zp(n) = F (zCH) + F (zIM3
) + C(zCH , zIM3

) (8)

where C(zCH , zIM3
) is the sum of nonlinear cross terms of

the form zk1

CH(n− l)zk2

IM3
(n− l)z

∗k′
1

CH(n− l)z
∗k′

2

IM3
(n− l) with

k1 + k2 = k/2 + 1, k′1 + k′2 = k/2 and ki, k
′
i > 0.

The second transformation step (Fig. 4c) restricts the
postdistorter model to the following equation:

zp(n) = F (zCH) + F (zIM3) (9)

thus neglecting the cross terms in (8). This obviously reduces
the amount of information used for the computation of ĉ (3).
Finally, the last transformation step of the postdistorter model
(Fig. 4d) corresponds to the following equation:

zp(n) = F (zCH) + zIM3(n). (10)

This transformation scales zIM3
(n) and discards the delayed

versions and nonlinear terms of zIM3(n). Which is again a
loss of information.

The main thing is that when zIM3
(n) = 0, i.e. when the

ILA architecture has converged, (10) is equivalent to (8). This
highlights that the regular architecture and the one proposed
in this paper are asymptotically the same. Fig. 5 shows the
convergence of the algorithm through the Normalized Mean
Square Error (NMSE) for the four postdistorters sketched in
Fig. 4. For these simulations, the filters are equiripple FIR fil-
ters (more details are given in the next section) and we can see
that the imperfections of this filter bank gives rise to a loss of
information (difference between ILA and Arch 1 curves) that
should not occur with perfect ideal brick wall filters. We can
see that, after some system iterations (4 in this example), Arch
1, Arch 2 curves are very close and that the loss of informa-
tion coming from the modification between Arch 1 and Arch
2 impacts mainly the convergence speed but does not bias the
result. We can also check that the Sb curve follows closely
the Arch 2 one. We can conclude by saying that these simu-
lation results confirm the asymptotic behavior of the subband
postdistorter architecture that was inferred in this section.
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Fig. 5. NMSE vs system iterations for the four postdistorter
architectures: ILA (Fig. 4a), Arch 1 (Fig. 4b), Arch 2 (Fig.
4c) and Sb (Fig. 4d)

4. SIMULATION RESULTS AND DISCUSSION

The proposed subband DPD architecture has been evalu-
ated through baseband Matlab simulations. We present here

8026



−60 −40 −20 0 20 40 60
−120

−100

−80

−60

−40

−20

0

Frequency (MHz)

N
o
rm

a
liz

e
d
 M

a
g
n
it
u
d
e
 (

d
B

/H
z
)

 

 

ILA

Arch1

Arch2

Arch2

Input

Output

(a) Spectrum at the output of the PA
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Fig. 6. Figures of merit vs postdistorter identification archi-
tecture: ILA (Fig. 4a), Arch 1 (Fig. 4b), Arch 2 (Fig. 4c) and
Sb (Fig. 4d)

the results obtained with a PA modeled by a Wiener model
proposed in [12]. The waveform is an LTE signal having a
bandwidth of BW=20MHz with a PAPR of approximately
11dB. The sampling frequency is 122.88MHz. Three fil-
ters are used in the post-distorter path (Fig. 2b and 3):
HCH , HIM3

and HIM5
. As the simulation is baseband

HCH is a low-pass filter with (BW/2)MHz bandwidth
and all other filters are pass-band with bandwidth equal to
K · BW MHz and center frequencies respectively equal to
K ·BW MHz, 2 ·K ·BW MHz and 3 ·K ·BW MHz, with
K ≤ 1.

The results presented in Fig. 6 have been obtained using
Equiripple FIR filters with K = 0.9 and a transition band-

width of 500KHz. The three different figures of merit for a
predistortion system which are presented are the spectrum at
the output of the PA, the Error Vector Magnitude (EVM) and
the lower Adjacent Channel Power ratio (ACPR). After the
four kinds of postdistorter have converged, i.e. system itera-
tion 10 in this simulation, we can see that the output spectra
reach approximately the same level of performance, Fig. 6a.
This shows again that postdistorter architectures Fig. 4a and
4d behave the same after some system iterations. Even if Fig.
6c shows a slow-down of the convergence with the transfor-
mation of the postdistorter from ILA to Arch 1 and even more
from Arch 1 to Arch 2, the biggest impact on the convergence
speed appears to be for the ACPR, more precisely with the
modification from Arch 1 to Arch 2 which impacts signifi-
cantly the decreasing of the ACPR vs system iterations.

Fig. 7 shows the convergence rate concerning the de-
crease of the upper ACPR. The different results are obtained
by varying the bandwidth parameter K of the HIMx

filters
applied on the intermodulation products bands (Fig. 3). It
can seen that the algorithm shows a converging behavior
even with very few informations on intermodulation products
(K = 0.2) and that the convergence rate has a low sensitivity
to K for K ≥ 0.8.
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5. CONCLUSION

We have proposed in this paper a new ILA DPD architecture
based on subband decomposition of the output signal of the
PA. It has been shown that the proposed architecture corre-
sponds to a modification of the postdistorter model that may
impact the convergence rate, but has an asymptotic behavior
similar to the regular ILA DPD architecture. The sensivity to
the effective bandwidth of the feedback filters has also been
discussed. This new architecture allows to relax the AtoD
converter requirements: sampling frequency, dynamic range
and thus power consumption. This also gives the possiblity to
decrease the complexity (Number of operation per second) of
the identification algorithm.
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