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ABSTRACT
A novel kernel algorithm is proposed for nonlinear prediction
whereby the signal is modelled as a state of a hidden Markov model
(HMM). The transition function of the HMM is approximated using
kernels, whose weights are also part of the state of the system and
are learnt in an unsupervised fashion by a sample importance resam-
pling (SIR) particle filter. The SIR proposal density is designed so
as to maintain a diverse population of particles, thus avoiding parti-
cle degeneracy arising from inaccuracies of early model estimates.
The kernel HMM algorithm is further equipped with a sparsification
criterion based on approximate linear dependence and its perfor-
mance is evaluated against the KNLMS and KRLS algorithms for
the prediction of synthetic signals and real world point-of-gaze data.

Index Terms— Kernel LMS, kernel RLS, hidden Markov mod-
els, particle filters, gaze tracking.

1. INTRODUCTION

The prediction problem refers to the estimation of the process Xt+1

given the observation1 path Y0:t = y0:t [1]. When noisy observa-
tions of the processX0:t = x0:t are available,Xt+1 can be predicted
using a supervised regression model. These include least squares or
ridge regression for the batch processing case, and least mean square
(LMS) or recursive least squares (RLS) for the recursive mode [2].
Alternatively, when X0:t is a hidden process with known evolution
and observation dynamics, the Kalman filter (linear case) and its
nonlinear extensions, as well as particle methods, are a de facto stan-
dard for signal filtering and prediction [3–5].

Standard prediction algorithms do not cater for model uncer-
tainty, as they either assume linear models or require complete
knowledge of the underlying latent dynamics using e.g. a hidden
Markov model (HMM). To enable prediction even in cases when
the system model is known only partially, we propose an additional
degree of freedom which enables the filter to learn the HMM func-
tions using reproducing kernels [6], a class of universal function
approximators which can be trained to replicate the relationship
between input-output pairs. Kernel methods have been successfully
applied in nonlinear filtering based on the so-called kernel trick [7]
and provide robust nonlinear estimation with low computational
complexity. Established algorithms include the kernel ridge regres-
sion [8], kernel recursive least squares (KRLS) [9], kernel least
mean square (KLMS) [10, 11], kernel affine projection and kernel
normalised LMS (KNLMS) [12], and multikernel LMS [13]. These
have found applications in channel equalisation, wind prediction,
trajectory tracking, and fault diagnosis [14–19].

A major limitation of the existing kernel prediction approaches
is that they provide point estimates rather than the complete predic-
tion density. We rectify this issue by modelling the signal as the state

1Where Yt denotes the random variable and yt its realization at time t.

of an HMM and using kernels to learn the state-transition function of
the HMM, thus allowing for a full statistical description of the pro-
cess. Since the state of the HMM is—by definition—unobservable,
this requires unsupervised learning. We base our approach on self-
organising state space models [20], whereby the unknown parame-
ters are considered part of the state of the HMM and are then filtered
jointly with the original state from the observations using particle
filters.

Previous research combining HMM and kernel regression in-
cludes the approaches in [21], which identifies a system by kernel es-
timation, and in [22], which represents the distribution of the model
using points in a Hilbert space. Both of these algorithms are super-
vised and trained with noisy observations, making them unsuitable
for non-stationary environments. Unsupervised approaches include
kernel density estimation of the model likelihoods using Markov
chain Monte Carlo (MCMC) in the context of multivariate variance
estimation [23], and reversible-jump MCMC methods [24] that are
flexible and robust to the choice of priors owing to their hierarchical
structure. These, however, require a fair amount of information to
converge, making them inadequate for online applications.

This all highlights the void in the open literature concerning a
class of algorithms that brings under one umbrella: (i) the ability of
kernel adaptive filters to jointly train and predict signals online; (ii)
the stochastic modelling strength of HMMs; and (iii) the suitability
of particle filters for nonlinear filtering. To this end, we introduce
a particle filtering based unsupervised kernel HMM algorithm, and
evaluate its performance against both the KNLMS and KRLS for
the prediction of synthetic nonlinear signals and gaze tracking. The
analysis shows that kernel HMM predictions are not only as accu-
rate as those produced by the existing KNLMS and KRLS, but are
also robust to excessive levels of observation noise. In addition, we
show that the second order statistics and distribution of the kernel
HMM predictions are consistent with the observed signals, and can
therefore be used to compute reliable confidence intervals.

2. KERNEL-BASED PREDICTION

Consider the discrete-time process {Xt}t∈N defined by

Xt+1 = ft(Xt) + Vt, (1)

where {Vt}t∈N is a noise process, ft(·) a nonlinear function, and
observations Xt = xt become available sequentially.

At time t, the value of Xt+1 can be predicted via kernel regres-
sion [25] in the form

X̂t+1 =

N∑
j=1

ωt,jK(xt, sj) (2)

whereK is a reproducing kernel [6], {s1, s2, ..., sN} are the support
vectors, and ωt = [ωt,1, . . . , ωt,N ] are the kernel weights at time
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instant t. This formulation provides nonlinear regression capability
and requires finding a suitable set of support vectors and coefficients
ωt.

As the number of support vectors rapidly becomes overwhelm-
ing for online applications, sparsification procedures are needed to
avoid excessive computational cost. We next review the sparsifica-
tion criterion based on approximate linear dependence for choosing
the support vectors.

2.1. Approximate linear dependence (ALD)

In the context of kernel regression, the ALD sparsification criterion
[26] includes the observation xt to the dictionary D = {si}i=1:N

when its feature sample φ(xt) does not fulfil the condition

δ = min
a∈RN

‖[φ(s1), . . . , φ(sN )]a− φ(xt)‖2 ≤ η (3)

for η > 0.
The optimal coefficients are calculated as aopt = K−1h(xt),

where the entries of both the Gram matrix K and the kernel-
evaluation vector h(xt) are given respectively by Kp,q = K(sp, sq)
and hp(xt) = K(xt, sp). Upon replacing a = aopt into (3), the
ALD condition becomes

δ = K(xt,xt)− hT (xt)aopt ≤ η. (4)

The idea underpinning ALD can be summarised as follows: if a
feature sample is approximately linearly dependent with respect to
the current dictionary, its inclusion would be redundant and the asso-
ciated computational cost would not justify the (marginal) increase
in performance.

2.2. Kernel least mean square (KLMS)

The KLMS algorithm updates the coefficients of the prediction in
Eq. (2) in an LMS fashion whenever a new observation xt becomes
available [10]. When the dictionary is not modified, the parameters
ωt are updated according to

ωt+1 = ωt + µet+1h
T (xt)

where µ > 0 is the learning rate and et+1 = xt+1 − ωh(xt) is
the prediction error. Note that when a new vector xt is added to the
dictionary, the initial value of the corresponding weight is set to

ωt+1,j = 0 + µet+1K(xt,xt).

We will use a normalised version of this algorithm, the kernel nor-
malised LMS (KNLMS) [12], in our simulations in Section 4.

2.3. Kernel recursive least squares (KRLS)

In a similar fashion, the KRLS [9] uses the RLS strategy to update
the coefficients ωt. When a new sample xt is added to the dictionary,
the update rule becomes

ωt+1 =
[
ωt + δ−1et+1a

T , δ−1et+1

]
whereas when the dictionary is not updated we have

ωt+1 = ωt +
et+1ωtPtK

−1

1 + ωtPtωT
t

.

The parameters a and δ are computed as in the ALD step from Eqs.
(3) and (4), while the matrix Pt is the covariance matrix of the RLS
estimate, see [9] for more details.

3. A KERNEL HIDDEN MARKOV MODEL

Unlike the KLMS and KRLS algorithms, which provide point pre-
dictions by updating the parameters ωt based on the prediction er-
ror, our aim is to provide statistical description by estimating the full
prediction density, thus allowing for the estimation of higher order
statistics and confidence intervals. To this end, we model the signal
and its observation as the state and output of a HMM respectively,
and then estimate the prediction density using nonlinear filters.

Consider the state space model of the form

Xt+1 =

N∑
j=1

ωt,jK(Xt, sj) + Vt (5)

Yt = Xt +Wt (6)

where {Xt}t∈N, {Yt}t∈N are respectively the latent and observed
processes, and {Vt}t∈N,{Wt}t∈N are independent noise processes.

Observe that this is a simplified version of an HMM, whereby
the state transition function in (5) is a weighted kernel combination,
and the observation function in (6) is an identity. With this form of
the state transition, the task of model identification is reduced to find-
ing the coefficient ω ∈ R1×N and the support vectors {sj}j=1:N .
In addition, we equip the proposed framework with the ALD spar-
sification criterion [26] for choosing the support vectors from the
stream of observations y0:t. The update of ωt is elaborated in the
next section.

Remark 1. The estimation setting in (5)-(6) offers enhanced mod-
elling capability, since the use of universal kernels guarantees that
the expression

∑N
j=1 ωt,jK(Xt, sj) approximates any continuous

function ft(Xt) with arbitrary precision [27].

Remark 2. The aim of the proposed model is to estimate the statis-
tics of the process Xt+1 conditional to the observations Y0:t = y0:t

in a non-parametric manner, and not necessarily to identify the true
underlying system.

3.1. State space model

Within the above kernel setting, we consider the unknown kernel
weights ωt to be part of the state of the HMM, so that its posterior
distribution p(ωt|y1:t) can be estimated using particle filters. This
yields the state space model

Xt+1 =

N∑
j=1

ωt,jK(Xt, sj) + Vt, Vt ∼ N
(
0,Σ2

X

)
ωt+1,j = ωt,j + εωt , ε

ω
t ∼ N

(
0, σ2

ω

)
(7)

Yt = Xt +Wt, Wt ∼ N
(
0,Σ2

Y

)
where [Xt;ωt] is the state of the HMM, and Σ2

Y ,Σ
2
X , σ

2
ω are the

covariances of the corresponding processes.
This approach for system identification, referred to as self-

organising state space models [20], assumes artificial evolution
dynamics and is well known to provide reasonable estimates of
model parameters when using particle filters in real-world applica-
tions [28, 29].

Remark 3. The model (7) offers two distinguishing advantages: (i)
by allowing the parameters ωt to gradually change, the resulting
time-varying model is suitable for nonstationary environments; (ii)
by virtue of the parameters being part of the (extended) system state,
their posterior density can be found using particle filters.
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3.2. Prediction using particle filters

To estimate the joint posterior of Xt and ωt in (7) conditional to the
observed path Y0:t = y0:t, we propose to use sequential importance
resampling (SIR) particle filters [30]. In this way, p(Xt,ωt|y0:t)

is approximated by a weighted average of particles (x
(j)
t ,ω

(j)
t ), for

which the weights α(j)
t are recursively calculated based on the likeli-

hood of each particle [5]. Additionally, a Gaussian proposal density
π that is sufficiently wide is considered so as to fully explore the
state space and to avoid particle degeneracy,

Remark 4. Notice that in our case the usual practice of choosing
the proposal density π equal to the model prior is highly inappropri-
ate, since the HMM in (7) might not be able to resemble the desired
model before a sufficient number of samples have been processed.

The marginal filtering density of the SIR is then given by

P̂N (xt,ωt|y1:t) =

Np∑
j=1

α
(j)
t δ

x
(j)
t ,ω

(j)
t

(xt,ωt) (8)

and the SIR weight update by

α
(j)
t ∝ α

(j)
t−1

p
(
yt

∣∣∣x(j)
t ,ω

(j)
t

)
p
(
x
(j)
t ,ω

(j)
t

∣∣∣x(j)
t−1,ω

(j)
t−1

)
π
(
x
(j)
t ,ω

(j)
t

∣∣∣x(j)
t−1,ω

(j)
t−1,y1:t

) (9)

For simplicity, we consider a proposal density π whereby the particle
components x

(j)
t ,ω

(j)
t are jointly Gaussian and independent given

x
(j)
t−1,ω

(j)
t−1, that is

x
(j)
t ,ω

(j)
t ∼ π

(
x
(j)
t ,ω

(j)
t

∣∣∣x(j)
t−1,ω

(j)
t−1,y1:t

)
(10)

= N
(
x
(j)
t−1,Σx

)
N
(
ω

(j)
t−1,Σω

)
.

Finally, the prediction distribution of the hidden process is cal-
culated using the estimate of the posterior density in Eq. (8) to yield

p̂(xt+1|y1:t) =

∫
p(xt+1|xt,ωt)P̂N (xt,ωt|y1:t)dxtdωt

=

Np∑
j=1

α
(j)
t p(xt+1|x(j)

t ,ω
(j)
t ) (11)

where dxtdωt is the Lebesgue measure in X × RN . Based on the
priors in the model (7), the estimated prediction of the process Xt

becomes

E{Xt+1|y0:t} =

Np∑
j=1

α
(j)
t

N∑
i=1

ω
(j)
t,iK(x

(j)
t , si). (12)

Fig. 1 summarises the information flow within the proposed ker-
nel HMM algorithm, including the components of the SIR particle
filter, ALD sparsification, and prediction stage. The input (observa-
tion yt) and output (predictions) of the algorithm are respectively
given in red and brown, while the particles are colour coded in ma-
genta, the SIR weights in green, and the support vectors in blue.

4. SIMULATION RESULTS

The performance of the proposed kernel HMM was evaluated against
the KNLMS [12] and KRLS [9] for the prediction of synthetic data
and real-world two-dimensional point-of-gaze signals.

Sparsificationyt

Prediction

Support vectors

Sampled
weights

Predictions:
-p̂(xt+1|y1:t)
-E{Xt+1|y1:t}

SIR: importance weights

SIR: proposal density
Generate particles using

Eq. (10)

Use weights and
particles to compute

Eqs. (11)-(12)

Sampled
particles

{si}

{x(j)
t ,ω

(j)
t }

Particles

Weights

{α(j)
t }Use yt, model in Eq. (7), and

support vectors {si} to calculate
SIR weights {α(j)

t } via Eq. (9)

SIR: Resampling

ALD
Observation

Fig. 1: Block diagram of proposed kernel HMM algorithm.

4.1. Nonlinear prediction

In the first set of simulations, the following benchmark nonlinear
system [5] was considered

Xt+1 =
Xt

2
+

25Xt

1 +X2
t

+ 8 cos(0.8t) + Vt

Yt = Xt +Wt

where Vt ∼ N (0, 1) and Wt ∼ N (0, 9).
The goal was to recursively predict Xt+1 from the noisy obser-

vations Y0:t = y0:t. The kernel width and ALD threshold were
A = 0.8 and δ = 0.1, respectively. The algorithm parameters
were µ = 0.6 for the KNLMS and the variances Σ2

X = 20, σ2
ω =

.01,Σ2
Y = 9 for the kernel HMM with Np = 400 particles.

Fig. 2 shows the hidden process Xt, its kernel HMM pre-
diction, and the confidence interval corresponding to two standard
deviations centred about the prediction. Observe that the estimated
two-standard-deviation confidence interval progressively included
the original signal as more information became available, highlight-
ing the statistical prediction ability of the proposed kernel HMM
as opposed to standard point predictions. The average prediction
mean squared error (MSE) of the kernel algorithms considered was
evaluated over 50 independent realisations and is given in Table 1;
the kernel HMM outperformed the KNLMS and KRLS. Observe
that the better performance of KNLMS over KRLS indicates the
nonstationarity of the system.

0 10 20 30 40 50 60 70 80 90 100

−20

−10

0

10

20

Time [samples]

Predicted mean ± std Predicted mean of Xt Original signal

Fig. 2: Prediction using the proposed kernel HMM.
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Table 1: Prediction performance of kernel algorithms

Kernel HMM KNLMS KRLS
MSE 8.54 9.08 10.09

4.2. Tracking coordinates of eye movement

We next validated the kernel HMM for the task of gaze prediction.
A Tobii T60 Eye Tracker was used to acquire the horizontal and
vertical point-of-gaze signals when reading a 20-word text arranged
in two lines. This is a challenging task, as a linear reading of the
task is followed by a jump to the beginning of the next line.

The data were centered, missing values were replaced by their
previous value and a preliminary recording was used to set the em-
pirical parameters: a) kernel width A = 5 · 10−4, b) KNLMS
gain µ = 0.6, c) ALD threshold δ = 0.1, d) number of particles
Np = 800 and e) kernel HMM variances σ2

ω = 1,

Σ2
X = 300

[
10 1
1 1

]
, Σ2

Y = 300

[
5 2.45

2.45 2.8

]
.

The performances of all three kernel algorithms considered
were assessed in the presence of additive Gaussian noise of different
power added to the point-of-gaze data; the averaged performances
as a function of the signal-to-noise ratio (SNR) are shown in Fig. 3.
The kernel HMM (in red) proved to be more robust to uncertainties
in the observations than the KNLMS and KRLS.

24.4326.0227.9630.4633.9840
40

60

80

Signal-to-noise ratio [dB]

M
S
E

KNLMS
KRLS
Kernel HMM

Fig. 3: Performances of kernel algorithms for gaze prediction.

Fig. 4 presents the measurements of the gaze signal and the
kernel HMM predictions for the signal mean and standard deviation
for the complete duration of the recording for the SNR=26.02 [dB],
highlighting the suitability of the algorithm to track point-of-gaze
changes as well as its accuracy. Fig. 5 illustrates the accuracy of
kernel HMM compared to the KNLMS and KRLS, and its reduced
level of noise in predictions.

50 100 150 200 250 300

−400

−200

0

200

400 Horizontal axis

50 100 150 200 250 300

−50
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Time [samples]

Prediction ± std Kernel HMM prediction Original signal

Fig. 4: Predicted mean and standard deviation within kernel HMM,
evaluated for a two-dimensional point-of-gaze recording.
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100
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Fig. 5: Kernel algorithms prediction and original gaze signal for
KNLMS, KRLS and kernel HMM.

The kernel HMM provides a full statistical description of the
signal. Fig. 6 shows the prediction density and the original signal
(SNR=26.02 [dB]). Observe that the prediction densities computed
using kernel HMM successfully track the signal, as their probability
mass is located around the original process. This makes possible for
the computation of both reliable estimates and the associated confi-
dence intervals.
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Fig. 6: Original signal and kernel HMM densities for the prediction
of gaze signals.

5. CONCLUSIONS

A particle filtering based kernel HMM has been introduced for the
prediction of nonlinear and nonstationary signals. The proposed al-
gorithm models the signal as the latent state of an HMM, whereby
the transition density is approximated using kernels and the weights
are learnt in an unsupervised fashion using sequential importance re-
sampling. The kernel HMM has been validated for the prediction of
a synthetic nonlinear signal and real-world point-of-gaze recordings,
highlighting three desired properties of the kernel HMM predictor:
(i) steady state accuracy comparable to those of standard kernel esti-
mation algorithms (KNLMS and KRLS), (ii) robustness to high ob-
servation noise, and (iii) full statistical description of its predictions,
which allows for the estimation of confidence intervals.
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