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ABSTRACT

We propose a robustification of the mean-shift algorithm. We

understand robustness in the statistical sense as the deviation

from the nominal, distributional assumption. The derivation

of the robust mean-shift vector is based on a robust version

of the kernel density estimator (KDE), where the KDE is in-

terpreted as an inner product in a higher dimensional feature

space. The mean in this formulation is replaced by an M-

estimate in order to robustify against outlying data points. We

show the superiority of our algorithm compared to the stan-

dard mean-shift algorithm and to the median-shift algorithm

using both simulated and real data in both contaminated and

uncontaminated data. The real data stems from an image seg-

mentation application for blood glucose measurement.

Index Terms— M-estimator, robust kernel density esti-

mation, mean-shift, mode finding, glucose measurement

1. INTRODUCTION

The mean-shift algorithm is an unsupervised, nonparametric

clustering approach that is based on finding the modes of an

underlying distribution and assigning each data point to its

nearest mode. It does not require a priori information on the

shape or the number of clusters, as this is rather an output of

the algorithm. Each data point in the feature space is moved

by the mean-shift vector in the direction of the steepest as-

cent. The mean-shift vector can be intuitively understood as

the difference between a data point and a weighted mean of

its neighboring points. Basically, the mean-shift algorithm is

a gradient ascent approach with the advantage of an adaptive

step-size that is determined by the magnitude of the mean-

shift vector. The mean-shift vector reaches convergencewhen

its magnitude becomes zero, indicating a stationary point.

The mean-shift algorithm was proposed in 1975 by

Fukanaga and Hostetler [1]. Later, it was readopted and

generalized by Cheng [2] as a gradient ascent method. Both

Cheng and Carreira-Perpinan [3] proved its convergence for

different kernels. Comaniciu et al., [4–8], applied it to low-

level vision problems such as segmentation and tracking. The

mean-shift algorithm has recently become a popular tool for

segmentation of biomedical images [9–11], where neither the

number of clusters nor their shape are known in advance.

However, real data is often contaminated, due to either

lighting effects or artifacts in the scene of interest, as in our

application, such as air bubbles, granularities in the chem-

ical substance or small contaminating particles. For these

cases a robust solution is required. Otherwise, the cluster-

ing behavior is influenced by outliers, leading to a degraded

performance. There has been some work on the median-shift

as a more robust alternative to the mean-shift that addition-

ally achieves a significant speed-up [12, 13]. Nevertheless, it

tends to under-segment the data [14], and therefore, does not

always correctly assign each data point to the corresponding

cluster.

In this contribution we propose a different approach for

the robustification of the mean-shift algorithm that is based

on the robust KDE (RKDE) of Kim and Scott [15]. We show

that the robust mean-shift algorithm outperforms the stan-

dard mean-shift. Furthermore, we apply our concept to the

median-shift to obtain a robust KDE based median-shift that

compares favorably to the former one. For validation, we

use both simulated 1-D data, as well as real data. The real

data stems from an image segmentation application for blood

glucose level estimation.

The remainder of the paper is organized as follows: Sec-

tion 2 briefly revisits the concept of M-estimation as it is

the basis of the robustification procedure, while Section 3

explains the robust kernel density estimator. The mean-shift

algorithm is covered in Section 4, followed by a derivation of

the robust formulation of the mean-shift algorithm. This is

succeeded by the presentation of the data sets and a depiction

of the results in Section 5. Finally, a conclusion is drawn in

Section 6.

2. THE M-ESTIMATOR

Given the location model

xl = µ+ vl, l = 1, · · · , L, (1)

where vl and herewith, xl, are realizations of i.i.d. random

variables, drawn from the distributions with density function
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fV and fX, respectively. A good model for uncontaminated

data is fX ∼ N (µ, σ2
I). The aim is to estimate µ̂ = µ̂(x)

even when the data is strongly contaminated. Contamination

can be modelled as follows [16]

fX = (1 − ε)fN + εfC , (2)

where fN is the nominal distribution, fC is the contaminat-

ing distribution and ε is the degree of contamination. An M-

estimate [17] of µ reads

µ̂ = argmin
µ

L
∑

l=1

ρ(xl − µ), (3)

where ρ is a differentiable loss function. Taking the derivative

w.r.t. µ and setting it to zero leads to

L
∑

l=1

ψ(xl − µ) = 0, (4)

where ψ = ρ′. For the Maximum Likelihood (ML) estimate

ψ is a linear function, i.e. ψ(x) = x. Thus, µ̂ML(x) =
1
L

∑L
l=1 xl. Huber proposed the use of different loss func-

tions [18], that perform in a nearly optimal manner when fX
is exactly normal as well as when fX deviates from the nom-

inal assumption. In this way, M-estimators can be seen as a

generalization of the ML estimator. Intuitively, they can be

understood as a weighted average

W (xl − µ) =

{

ψ(xl−µ)
xl−µ

if (xl − µ) 6= 0

ψ′(0) if (xl − µ) = 0.
(5)

For the majority of the data the weights are close to

one, while the outliers are down-weighted. Furthermore, the

weights wl = W (xl − µ) fulfill wl ≥ 0 and
∑L

l=1 wl = 1.
The location estimate, thus, reads

µ̂(x) =

L
∑

l=1

wlxl.

Usually, a closed-form solution cannot be found and the

weights have to be calculated numerically, e.g. using an iter-

ative reweighting algorithm [17].

If the problem is that of location estimation with unknown

scale, a robust initialization of the scale σ̂ needs to be found

to ensure convergence to a good solution. For that, it can be

sufficient to use [19]

σ̂(x) = 1.483 ·median(|x−median(x)|). (6)

Different loss functions exist in the literature [20]. They

can be mainly divided into the family of monotone loss func-

tions and the family of redescending loss functions, which

tend to zero when residuals grow very large. Fig. 1 illustrates

commonly used loss functions.
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Fig. 1. Different score (a) and weight (b) functions: Tukey’s

Biweight belongs to the family of redescenders, while Huber

belongs to the monotone family. The Maximum Likelihood

ψ-function is shown for comparison.

3. THE ROBUST KERNEL DENSITY ESTIMATOR

In [15], Kim and Scott derived a robust kernel density estima-

tor (RKDE) based on the M-estimator. The standard KDE for

the samples xl is given by

f̂(x) =
1

L

L
∑

l=1

K
(

||x− xl||
2
)

, (7)

where K(·) is the Gaussian kernel function. Using the

so-called kernel trick [21], the kernel function can be ex-

pressed as an inner product in the Hilbert space H, such that

K
(

||x− xl||2
)

= 〈Φ(x),Φ(xl)〉, where Φ is the mapping

function: Φ : R
d → H and 〈·〉 denotes the inner product.

This yields

f̂(x) =
1

L

L
∑

l=1

〈Φ(x),Φ(xl)〉

= 〈Φ(x),
1

L

L
∑

l=1

Φ(xl)〉 = 〈Φ(x), µ̂Φ,ML〉, (8)

which is the inner product betweenΦ(x) and the sample mean

of Φ(xl). Replacing the sample mean by a robust M-estimate

µ̂Φ = argmin
µ

Φ

L
∑

l=1

ρ(||Φ(xl)− µΦ||), (9)

leads to the robust KDE

f̂(x) = 〈Φ(x), µ̂Φ〉 =
〈

Φ(x),

L
∑

l=1

wlΦ(xl)
〉

=

L
∑

l=1

wlK
(

||x− xl||
2
)

. (10)

They can be obtained using Iteratively ReWeighted Least

Squares (IRWLS) [17]. The IRWLS for the RKDE weight
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Table 1. IRWLS for calculating the weights of the RKDE.

1. Initialize weightsw0 and iteration variable k = 0.

2. Compute ||Φ(xl)− µ
k
Φ|| as in (11).

3. Calculate σ̂(||Φ(xl)− µ
k
Φ||) robustly using (6).

4. Update w̃k =
ψ(||Φ(xl)−µ

k

Φ
||/σ̂)

||Φ(xl)−µ
k

Φ
||/σ̂

and

normalize towk.

5. Stop when |µ̂k+1
Φ − µ̂

k
Φ| < σ̂ǫ.

computation is summarized in Table 1.

Using µ̂Φ =
∑L
l=1 wlΦ(xl), we obtain for ||Φ(xl)− µ̂Φ||

||Φ(xl)− µ̂Φ||
2 = 〈Φ(xl)− µ̂Φ,Φ(xl)− µ̂Φ〉

= 〈Φ(xl),Φ(xl)〉 − 2〈Φ(xl), µ̂Φ〉+ 〈µ̂Φ, µ̂Φ〉

= K
(

||xl − xl||
2
)

− 2

L
∑

j=1

wjK
(

||xj − xl||
2
)

+
L
∑

i=1

L
∑

j=1

wiwjK
(

||xi − xj ||
2
)

. (11)

4. THE ROBUST MEAN-SHIFT ALGORITHM

Let us first revisit the mean-shift algorithm before deriving its

RKDE-based formulation. For a given set of L data points

xl, l = 1, . . . , L in a d-dimensional space Rd, the underlying

density is estimated using a KDE

f̂K(x) =
1

L

L
∑

l=1

1

hd
K

(

(

x− xl

h

)2
)

, (12)

where K(x) is a radially symmetric kernel function with

bandwidth h. To locate the modes of the estimated density

the zeros of the gradient need to be found,

∇f̂K(x) =
2

L

L
∑

l=1

(x− xl)

hd+2
K ′

((

x− xl

h

)2)

= 0. (13)

Rearranging (13) leads to the so-called mean-shift vector

mh,K′(x) =







∑L
l=1 xlK

′
((

x−xl

h

)2)

∑L
l=1K

′
((

x−xl

h

)2) − x






, (14)

We pick up the derivation of the RKDE-based mean-shift

algorithm at (10) and set the derivative of the RKDE to zero

to obtain the robust mean-shift vector as

mh,K′(x) =







∑L
l=1 wlxlK

′
((

x−xl

h

)2)

∑L
l=1 wlK

′
((

x−xl

h

)2) − x






. (15)

The robust mean-shift algorithm iterates through each

data point xl in the data set, performing the following steps:

• Calculate the robust weights wkl , l = 1, ..., L as in Ta-

ble 1.

• Calculate the mean-shift vector mh,K′(xkl ) of the cur-
rent data point xkl .

• Shift xkl towards mh,K′(xkl ), hereby calculating the

next iteration point as xk+1
l = x

k
l +mh,K′(xkl ).

• Stop when convergence is reached, i.e.

|xk+1
l − x

k
l | < ǫ.

Note that the difference between (14) and (15) are the weights

wl. The formulation of the robust mean-shift vector, thus,

results in a separation of the problem, where the KDE is,

first, expressed robustly, hereby down-weighting the outliers.

Then, the modes of the RKDE are found using the mean-shift

concept. The proof for the convergence of the sequence x
k
l

given in [5] can be easily generalized to include wl.

We also apply this concept to the median-shift proposed

in [13]. In this, the authors propose choosing the weighted

medoid to be the new position of the data point

x
k+1,med
l = argmin

x∈{x0

l
}

L
∑

l=1

(x− xl)

hd+2
K ′

((

x− xl

h

)2)

. (16)

Based on (16), we suggest the introduction of wl, leading to

x
k+1,med
l = argmin

x∈{x0

l
}

L
∑

l=1

(x− xl)

hd+2
wlK

′
((

x− xl

h

)2)

.

(17)

5. EXPERIMENTS AND DISCUSSION

For the validation of the proposed algorithm, we use both

simulated and real data. In the following, a Gaussian kernel

is used with a data-driven bandwidth selection as suggested

by Comaniciu et al. [4]. We calculate the weights wl using

Huber’s loss function. The parameter of the loss function is

tuned to achieve 95% asymptotic efficiency in the Gaussian

case [20] and the IRWLS is initialized with uniform weights.

5.1. Simulation Data

First, we test the robustness of our algorithm by means of

1-dimensional unimodal and bimodal contaminated data

modelled as in (2). For the unimodal case fN follows

N (µ1, σ
2), while fC follows N (µC1, κσ

2), where κ is the

strength of the impulsive component. For the bimodal data,

fN follows 1
2N (µ1, σ

2) + 1
2N (µ2, σ

2), while fC follows

N (µC2, κσ
2). ε is varied between 0 ≤ ε ≤ 0.5 and κ is

varied between 1 ≤ κ ≤ 10 . We evaluate the mean squared

error (MSE) between the actual mode locations (µ1, µ2) and

the modes estimated using the respective mean-shift algo-

rithm (µ̂1,method, µ̂2,method) over 500 Monte Carlo runs for

different levels of ε and κ. The results of the robust mean-

shift (R-MS) algorithm and the comparison to the standard
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mean-shift (MS) algorithm can be seen in Fig. 2. We observe

that the overall performance of R-MS is better than MS. For

ε = 0 both R-MS and MS perform in a similar manner, with

R-MS slightly outperforming MS. The higher the contamina-

tion level the better the performance of R-MS, compared to

MS.
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Fig. 2. Results of (a) MS, (b) R-MS for the unimodal distri-

bution and (c) MS, (d) R-MS for the bimodal distribution.

5.2. Real Data

We validate our algorithm in an image segmentation scenario

for blood glucose concentration estimation. For this purpose,

the chemical reaction between a blood glucose sample and

a chemical substance is obtained using a photometric mea-

surement principle that is observed by a camera. The mea-

surement procedure results in a set of frames describing the

chemical reaction at the different time instances. We aim at

estimating the intensity of the region of interest, i.e. the region

where the blood glucose is actually reacting with the chemi-

cal substance, as it is directly related to the underlying glucose

concentration at each time instant. In [11], we showed that

the mean-shift algorithm provided good results for estimating

the intensity values of the region of interest. In some cases

however, the intensity estimate was not accurate due to occur-

ring artifacts such as granularity of the chemical substance,

air bubbles or particles contaminating the measurement area.

We show, here, the robust mean-shift algorithm results in an

improved estimation accuracy.

We present, first, an illustrative example in Fig. 3 to com-

pare the performance of the standard mean-shift to the robust

mean-shift algorithm. Clearly, the image is disturbed by a low

intensity contamination in the upper image part. This leads to

the standard mean-shift producing a mode estimate that is bi-

ased towards the low intensity region. The robust mean-shift

algorithm manages to down-weight the area of contamination

and place a more accurate mode estimate.

A real data set consisting of 47 measurements is used

for a more comprehensive validation. The measurements are
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Fig. 3. Example of a contaminated image (a) of the chemical

reaction for a blood glucose sample of 150 mg/dl and (b) its

histogram, as well as mode estimates for MS and R-MS.

obtained from whole blood samples of five different known

glucose levels: 30 mg/dl, 90 mg/dl, 150 mg/dl, 350 mg/dl,

550 mg/dl. Each measurement consists of a set of Nframes =
605 frames, corresponding to a testing time of Ttest = 20s.
The level of contamination varies among the frames. As an

evaluation measure we use the intergroup variance σ̂2
R̂
of the

intensity estimates R̂ at each time instant 0 ≤ t ≤ Ttest
for a measurement group of the same glucose concentration.

We compare the results of the standard mean-shift algorithm

(MS) to these of the RKDE mean-shift algorithm (R-MS), as

well as the results of the median-shift (MedS) to those of the

RKDE median-shift (R-MedS). Table 2 depicts the results.

We can see that in most cases the robust formulations of the

algorithms perform better than their non-robust counterparts.

Even when the contamination is not as strong as in the ex-

ample of Fig. 3, the robust formulations outperform. This is

due to the finite data size, where the asymptotic assumption

cannot be met.

Table 2. Comparison of methods for the real data set.

Gluc.

[mg/dl]

#

frames

σ̂2
R̂,MS

σ̂2
R̂,R-MS

σ̂2
R̂,MedS

σ̂2
R̂,R-MedS

30 6050 1.75 1.64 0.57 0.14

90 5445 0.65 0.61 0.30 0.22

150 5445 1.47 0.96 1.31 0.98

350 6050 1.05 0.79 0.76 0.6

550 5445 1.54 1.01 0.89 1.3

6. CONCLUSION

We have derived a robust formulation of the mean-shift algo-

rithm based on a robust KDE. The mean-shift vector in our

formulation is a calculated using the robustly weighted mean,

where the weights are calculated using an M-estimator. We

have validated our algorithm both on simulation as well as

real data for a glucose level measurement application. In both

cases our algorithm compares favorably to the standard mean-

shift. We are able to achieve more accurate estimates of the

glucose levels, even for uncontaminated data.
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