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ABSTRACT

In this paper we consider the identification of a class of linear-in-the

parameters nonlinear filters that has been recently introduced, the so-

called even mirror Fourier nonlinear filters. We show that perfect pe-

riodic sequences can be derived for these filters. A periodic sequence

is perfect for a nonlinear filter if all cross-correlations between two

different basis functions, estimated over a period, are zero. By apply-

ing perfect periodic sequences as input signals to even mirror Fourier

nonlinear filters, it is possible to model unknown nonlinear systems

exploiting the cross-correlation method. Then, the most relevant ba-

sis functions, i.e., those that guarantee the most compact representa-

tion of the nonlinear system according to some information criterion,

can be easily estimated. Experimental results on the identification of

a real nonlinear system illustrate the effectiveness of the proposed

approach.

Index Terms— Nonlinear filters, even mirror Fourier nonlinear

filters, perfect periodic sequences, cross-correlation method.

1. INTRODUCTION

In the field of system identification, appropriate deterministic in-

put signals have been proposed in the literature as an alternative to

the use of white random signals. Among them, perfect periodic se-

quences [1], [2] have been studied and proposed as inputs for linear

system identification [3]. A periodic sequence is called perfect if all

the cross-correlations between two different basis functions of the

modeling filter, estimated over a period, are zero. Thus, with per-

fect periodic sequences (PPSs) as inputs, the linear basis functions

x(n− i), with i ranging between 0 and the sequence period N , form

an orthogonal set. It has been proved in the literature that PPSs op-

timize the convergence speed of the NLMS algorithm [4, 5]. More-

over, without output noise, an NLMS algorithm excited by a PPS

of period N is able to identify a linear system within N samples

[4], [5]. The approach has been recently extended to the identifica-

tion of multichannel linear systems [6], [7]. Efficient identification

algorithms for linear filters, which require just a multiplication, an

addition and a subtraction per sample, have been developed for per-

fect sequences [8] and have been then extended to imperfect periodic

sequences [9]. PPSs have been also considered in areas related to

signal processing, such as information theory [10], [11], communi-

cations [12], [13], [14], [15], and acoustics [4], [16].

In the field of nonlinear signal processing, input signals alterna-

tive to the usual Gaussian white noise inputs have been investigated

for the identification of nonlinear systems. For example, pseudo-

random multilevel sequences have been proposed in [17] to identify

Volterra and extended Volterra filters. In [18], a Wiener model has
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been estimated using a multilevel sequence, generated using a single

binary maximal length sequence, and subsequently used to obtain a

truncated Volterra model by a change of basis. An efficient algorithm

for the identification of linear-in-the-parameters (LIP) nonlinear sys-

tems using periodic sequences has been described in [19], [20], as an

extension of the method for linear filters proposed in [8], [9].

The class of LIP nonlinear systems has been recently enriched

by a novel family of nonlinear filters, called even mirror Fourier non-

linear (EMFN) filters [21], [22]. Their basis functions are even mir-

ror symmetric, as the waveforms defining the discrete cosine trans-

form. It has been shown in [21], [22] that the EMFN basis functions

and their linear combinations constitute an algebra on the interval

[−1, 1] that satisfies all the requirements of the Stone-Weierstrass

theorem [23]. As a consequence, EMFN filters are universal ap-

proximators for causal, time invariant, finite-memory, continuous,

nonlinear systems, as the well-known Volterra filters. Moreover, the

basis functions of the EMFN filters are orthogonal for white uniform

input signals in the interval [−1, 1], and thus they can be simply es-

timated with cross-correlation methods [24]. A white uniform input

signal is useful for modeling nonlinear systems since it is broad-

band and explicitly bounds the range of inputs for which the model

is valid. According to the orthogonality property of the EMFN basis

functions, it is possible to conjecture the existence of a determinis-

tic quasi-uniform sequence for which the orthogonality condition is

guaranteed on a finite period. Indeed, we found that it is possible to

develop PPSs for EMFN filters. These sequences allow a simple and

effective identification of nonlinear systems by means of the cross-

correlation method, avoiding the drawbacks of the stochastic inputs,

i.e., the length of the time averages necessary to obtain a reasonable

accuracy of the coefficient estimates [24, page 77]. In this paper, we

refer specifically to the novel family of EMFN filters and develop

perfect periodic sequences for their efficient identification.

The paper is organized as follows. EMFN filters and their prop-

erties are summarized in Section 2. PPSs for EMFN filters are in-

troduced in Section 3. Nonlinear systems identification using PPS

is discussed in Section 4. Experimental results concerning the con-

struction of PPSs and the identification of a real nonlinear system are

presented in Section 5. Concluding remarks are given in Section 6.

The following notation is used throughout the paper. Intervals

are represented with square brackets, E[ ] indicates expectation, N is

the set of natural numbers, N+ the set of positive natural numbers, R

the set of real numbers, R1 is the unit interval [−1,+1], < x(n) >L

indicates time average over L successive samples of x(n).

2. EVEN MIRROR FOURIER NONLINEAR FILTERS

EMFN filters have been recently introduced [21], [22] to approxi-

mate the input-output relationship of discrete-time, time-invariant,
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finite-memory, causal, continuous, nonlinear systems given by

y(n) = f [x(n), x(n− 1), . . . , x(n−N + 1)], (1)

where f is a real continuous function and x(n) belongs to R1. For

1-dimensional functions,

y = f [ξ], (2)

a complete set of even mirror basis functions that can arbitrarily well

approximate (2) is given by

1, sin(
1

2
πξ), cos(πξ), sin(

3

2
πξ), . . . , cos(kπξ), sin(

2k + 1

2
πξ), . . .

(3)

where 1 is the basis function of order 0, sin( 2k+1

2
πξ) is a basis func-

tion of order 2k + 1, and cos(kπξ) is of order 2k, with k ∈ N.

To develop a set of even mirror basis functions for the N -

dimensional case, we write the functions in (3) for ξ = x(n),
ξ = x(n− 1), . . ., ξ = x(n−N +1), and multiply in any possible

manner the functions of different variable, taking care of avoiding

repetitions. The order of each N -dimensional basis function is then

defined as the sum of the orders of the constituent 1-dimensional

basis functions. It has been shown in [21], [22] that the linear com-

bination of these basis functions form an algebra that satisfies all the

requirements of the Stone-Weierstrass theorem and can arbitrarily

well approximate (1). Therefore, the EMFN filters are universal

approximators, as the well known Volterra filters. Moreover, their

basis functions are orthogonal for white uniform input signals in

R1. In this case, we can easily find an unbiased estimate for the

coefficients of the EMFN filter approximating (1) using the cross-

correlation method [24]. In fact, the generic coefficient gl of the

EMFN basis function fl(n) is given by

gl =
E[fl(n)y(n)]

E[f2
l (n)]

, (4)

where the expectation can be estimated using time averages.

The EMFN basis functions of order 1, 2, 3 are shown in Table 1,

while the basis function of order 0 is equal to 1. An EMFN filter of

order K and memory N is the linear combination of

NT (K,N) =

(
N +K

N

)

(5)

EMFN basis functions and has the same complexity of a Volterra

filter with same order and memory. In what follows, Sf (K,N) in-

dicates the set of basis functions of order less than or equal to K and

memory N , with cardinality NT (K,N). Sf,n(K,N) indicates the

subset of Sf (K,N) formed by the basis functions that are function

of x(n), which can be proved to have cardinality NT (K − 1, N).
fl(n) indicates the l-th EMFN basis function estimated at time n,

with l ranging between 1 and the cardinality of the set fl(n) belongs

to. Rl indicates the number of sine and cosine terms in fl(n). Thus,

for a white uniform input signal in R1,

E[f2
l (n)] = 2−Rl .

The orthogonality property of the basis functions of the EMFN

filters is lost when the input signal is not white nor uniformly dis-

tributed in R1, and thus the cross-correlation technique may become

not useful for system identification. In general, the main problem

of this technique, when stochastic inputs are used, is the length of

the time averages necessary to obtain a reasonable estimate of the

coefficients [24, page 77]. In fact, the estimate may require a huge

number of samples, and thus the cross-correlation approach is of-

ten not feasible in practice. To overcome this difficulty, in the next

section we introduce PPSs for EMFN filters, i.e., periodic sequences

Table 1. Basis functions of even mirror Fourier nonlinear filters

Order 1:

sin[ 1
2
πx(n)], . . . , sin[ 1

2
πx(n−N + 1)].

Order 2:

cos[πx(n)], . . . , cos[πx(n−N + 1)],
sin[ 1

2
πx(n)] sin[ 1

2
πx(n− 1)], . . . ,

sin[ 1
2
πx(n−N + 2)] sin[ 1

2
πx(n−N + 1)],

sin[ 1
2
πx(n)] sin[ 1

2
πx(n− 2)], . . . ,

sin[ 1
2
πx(n−N + 3)] sin[ 1

2
πx(n−N + 1)],

...

sin[ 1
2
πx(n)] sin[ 1

2
πx(n−N + 1)].

Order 3:

sin[ 3
2
πx(n)], . . . , sin[ 3

2
πx(n−N + 1)],

cos[πx(n)] sin[ 1
2
πx(n− 1)], . . . ,

cos[πx(x−N + 2)] sin[ 1
2
πx(n−N + 1)],

...

cos[πx(n)] sin[ 1
2
πx(n−N + 1)],

sin[ 1
2
πx(n)] cos[πx(n− 1)], . . . ,

sin[ 1
2
πx(n−N + 2)] cos[πx(n−N + 1)],

...

sin[ 1
2
πx(n)] cos[πx(n−N + 1)],

sin[ 1
2
πx(n)] sin[ 1

2
πx(n− 1)] sin[ 1

2
πx(n− 2)], . . .

...

sin[ 1
2
πx(n)] sin[ 1

2
πx(n−N + 2)] sin[ 1

2
πx(n−N + 1)].

that guarantee the orthogonality of the basis functions on a finite

time interval. Using these sequences, it is possible to obtain an exact

estimate of the coefficients of the EMFN filter applying again (4),

where the expectations are replaced by time averages on one or a

few periods of the PPS.

3. PERFECT PERIODIC SEQUENCES FOR EMFN

FILTERS

Let us consider a sequence x0, x1, . . . , xL−1 of period L. Such a

sequence is perfect for an EMFN filter of order K and memory N
if all the cross-correlations between two different basis functions,

estimated over a period, are zero, i.e., if

< fl(n) · fm(n) >L= 0, (6)

for all fl(n) ∈ Sf,n(K,N), fm(n) ∈ Sf (K,N) with fl(n) 6=
fm(n). We consider fl(n) ∈ Sf,n(K,N) instead of Sf (K,N)
since, for example, if the condition

< sin[
1

2
πx(n)] sin[

1

2
πx(n− 1)] >L= 0

is verified, then for the periodicity of the sequence it also results

< sin[
1

2
πx(n− j)] sin[

1

2
πx(n− j − 1)] >L= 0,

for all j = 1, . . . , N − 1.

Together with the conditions in (6) it is convenient to impose

< fl(n) · fl(n) >L= 2−Rl , (7)

for all fl(n) ∈ Sf,n(K,N) and fl(n) 6= 1, in order to have the same

power of a white uniform input signal in R1 for the basis functions.

The condition in (7) allows also to easily form an orthonormal set of
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basis functions by considering φl(n) = 2Rlfl(n). It is interesting

to note that the system of nonlinear equations defined in (6) and (7)

is equivalent to the following simpler system

< fl(n) >L= 0, (8)

for all fl(n) ∈ Sf,n(2K,N). In fact, the product of two basis func-

tions of order k and h, respectively, can be expanded in the sum of

basis functions of maximum order k + h. Each basis function in

(8) appears in the expansion of at least one of the products in (6).

Moreover, imposing (8), both (6) and (7) are satisfied. Indeed, if

we expand the products in (6), we find a linear combination of basis

functions different from f1(n) = 1, while if we expand the terms in

(7) we find a linear combination of basis functions which includes

f1(n). For example, sin2[ k
2
πx(n)] = {1 + cos[kπx(n)]}/2.

For sufficiently large L, the equations in (8) provide an under-

determined system of nonlinear equations in the variables x0, x1, . . .,
xL−1, that may have infinite solutions. The system in (8) has

Q = NT (2K − 1, N) equations and, for L ranging between 1.5Q
and 2Q, we have always been able to find a solution for it. Any

algorithm for the solution of systems of nonlinear equations can

be used, in principle, for this purpose. Indeed, we found particu-

larly useful the Newton-Raphson method. This method has been

implemented as described in [25, ch. 9.7] with the only modifica-

tion of reflecting the variables x0, x1, . . . , xL−1 in R1 when they

exceeded the range. In our approach, the iterations start from a

random distribution of x0, x1, . . . , xL−1 in R1 and the Jacobian

matrix is computed analytically. Obviously, employing a numerical

method, only an approximate solution for the PPS can be obtained.

Nevertheless, the resulting cross-correlations can be made as small

as desired, depending on the precision fixed by the stop-condition

of the Newton-Raphson method. In our experiments, the algorithm

has always been able to converge in few iterations for any selected

precision.

The main problem of the system in (8) remains the large number

of equations, which increases exponentially with the order K and

geometrically with the memory N . In order to reduce the number of

equations and variables, it is possible to exploit periodic sequences

with specific structures. In the following, a few conditions that allow

us to almost halve the number of equations, and thus the number of

variables, are given.

1) Symmetry: the PPS is formed with the terms a1, a2, . . . , aM and

the reversed ones aM , aM−1, . . . , a1. For any couple of symmetric

basis functions, only one equation is considered.

2) Oddness: the PPS is formed with the terms a1, a2, . . . , aM and

the negated ones −a1,−a2, . . . ,−aM . All odd basis functions have

zero average and can be removed from the system in (8).

3) Oddness-1: the PPS is formed with the terms a1, a2, . . . , aM

and those obtained by alternatively negating one every two terms

a1,−a2, a3,−a4, . . . ,−aM . By construction, all the basis func-

tions that change their sign by alternatively negating one every two

samples, as for example sin[ 1
2
πx(n)] sin[ 1

2
πx(n − 1)], can be re-

moved by the system in (8).

It is then possible to introduce “oddness-2”, “oddness-4”, . . .
conditions by alternatively negating two every four samples, four

every eight samples, and so on. It is also possible to exploit two or

more conditions together. The reduction in the number of equations

comes at the expense of a longer period of the resulting PPS. Never-

theless, the complexity reduction is determinant to solve the system

in (8). Indeed, the Newton-Raphson algorithm has memory and pro-

cessing time requirements that grow with the cube of the number of

equations. Therefore, in general, the method is effective for not too

large orders K and memory lengths N . A strategy to avoid these

difficulties is to resort to simplified models for the EMFN filters, as

done for Volterra filters in [26]. As a consequence of the reduction of

the involved basis functions, the derivation of PPSs becomes again

feasible and effective.

4. NONLINEAR SYSTEM IDENTIFICATION USING PPS

In this Section we deal with the identification of a discrete-time,

time-invariant, finite-memory, causal, continuous, nonlinear system.

Let us first assume that the input-output relationship of the nonlinear

system is expressed as a linear combination of EMFN basis functions

up to a given order K and memory of N samples,

y(n) =
∑

l

glfl(n). (9)

We can identify the system using a PPS of period L, designed with

the procedure outlined in the previous Section. The estimation of the

coefficients gl is immediate by estimating the cross-correlations be-

tween the output of the system and the basis functions over a period

mL with m ∈ N
+. Indeed, it results

ĝl =
< fl(n)y(n) >mL

< f2
l (n) >mL

≈ gl, (10)

Since the autocorrelations < f2
l (n) >mL can be pre-computed, the

computational cost of (10) is just a multiplication and an addition

per basis function and per input sample.

Let us now consider the case where the input-output relationship

of the system to be identified is a linear combination of EMFN ba-

sis functions with memory N and maximum order greater than K.

It is possible to see that, if we use for the identification of this sys-

tem a PPS for EMFN filters of order K and memory N , there is an

error affecting mainly the coefficients of the higher-order basis func-

tions, while, in general, this error has only a marginal influence on

the coefficients of the lower-order basis functions. Similarly, in the

case where the input-output relationship of the system to be identi-

fied is a linear combination of EMFN basis functions with order K
and memory greater than N , there is still an error affecting mainly

the coefficients of the basis functions associated with the most recent

samples x(n), x(n − 1), ..., while, in general, this error has only a

marginal influence on the coefficients of the basis functions associ-

ated with the less recent samples x(n−N +1), x(n−N +2), ... .

The proofs are omitted here because of the space limitations.

Another advantage offered by PPSs is that, according to the or-

thogonality of the basis functions on a period, it is possible to rank

them with reference to the reduction obtained in the mean square

error (MSE). The reduction in the MSE obtained by the l-th basis

function is given by

δMSEl =
< fl(n)y(n) >

2
mL

< f2
l (n) >mL

. (11)

Using (10) and (11), it is possible to minimize any information cri-

terion, in order to obtain a compact representation for the nonlinear

system. The most common criteria, exploited in the experiment de-

scribed in the next Section, are

- the Akaike’s information criterion (AIC) [27],

- the Final Prediction Error (FPE) [27],

- the Khundrin’s law of iterated logarithm criterion (LILC) [28],

- the Bayesian information criterion (BIC) or Schwarz criterion [29].

5. EXPERIMENTAL RESULTS

We present in this Section some experimental results that illustrate

the generation of PPSs, using the proposed procedure, and their po-

tentialities in the identification of real nonlinear systems.
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Fig. 1. Order and diagonal number of the first 400 selected basis functions for (a)-(b) the EMFN filter, (c)-(d) the Volterra filter.

Table 2. Results of Newton-Raphson method

Seq. Q M L Iter. Max XC

1 3003 4505 4505 12 1.3 E-16

2 2232 3348 6696 12 1.2 E-16

3 1567 2351 4702 9 1.5 E-16

4 1116 1675 6700 10 1.3 E-16

5 593 891 7124 9 1.2 E-16

In the first experiment, we highlight the ability of the Newton-

Raphson to solve the system in (8). In particular, we develop PPSs

for an order 3, memory 10 EMFN filter (i.e., with 286 coefficients).

The algorithm starts from a random uniform distribution of the

variables x0, . . . , xN−1 and optimizes them till the maximum ab-

solute value of the averages of the basis functions on a period is

less than 10−15. Table 2 summarizes the results obtained apply-

ing the Newton-Raphson method to the full system in (8) (Seq. 1)

and to the reduced systems obtained exploiting the sequence odd-

ness (Seq. 2), symmetry (Seq. 3), oddness and oddness-1 (Seq. 4),

oddness, oddness-1, and symmetry (Seq. 5). Table 2 provides the

number of equations in the system Q, the number of independent

variables M , the period L of the sequence, the number of itera-

tions (Iter.) necessary for the Newton-Raphson method to converge,

and the maximum cross-correlation (Max XC) between the ba-

sis functions of the resulting sequence. We can notice that the

Newton-Raphson method converges in at most 12 iterations and that

a number of independent variables M ≃ 1.5Q is sufficient to find a

solution.
In the second experiment, we consider the identification of a

guitar pedal, a Behringer Overdrive TO100. At 8 kHz sampling

frequency, the system has a memory length lower than 20 samples.

Thus, a PPS for an EMFN of order 3, memory 20, exploiting odd-

ness, oddness-1, and symmetry, and with period of L = 201412
samples has been fed to the amplifier input. The corresponding out-

put has been recorded with a notebook. Since similar results have

been obtained for all settings of the pedal “drive” control, only the

results for one of them are reported here. Table 3 shows the number

of terms selected by the AIC (with parameter 4), FPE, LILC, and

BIC information criteria, and the corresponding MSE for the EMFN

filter, estimated on a period L with the cross-correlation method of

(10), and for a Volterra filter, estimated with the method of [32] on

the same data. In this experiment, the EMFN filter provides results

at least as good as the Volterra filter in the identification of the non-

linear system. The main advantage of our method is the remark-

able reduction in the computational complexity. The method of [32]

has been chosen for comparison purposes since it is one of the most

computationally efficient identification methods for LIP nonlinear

systems. Nevertheless, the computational cost of the method of [32]

is of order TBS2 operations, i.e., multiplications and additions, with

T the number of samples used for the identification, B the number of

candidate basis functions, and S the number of selected basis func-

tions. In contrast, the cross-correlation method has a computational

Table 3. Results of identification of Behringer TO100.

Filter Information Selected MSE

Criterion Bases

EMFN AIC(4) 372 2.01E−3
FPE 576 2.00E−3
LILC 313 2.01E−3
BIC 176 2.02E−3

Volterra AIC(4) 352 2.23E−3
FPE 577 2.22E−3
LILC 205 2.23E−3
BIC 161 2.24E−3

cost of only TB operations. In our experiment, while the execution

of the cross-correlation required a processing time of few minutes,

the method of [32] requested hours of simulation.

Figure 1 shows the order and the diagonal number of the first 400

selected basis functions. By definition the “diagonal number” of a

basis function is the maximum time difference between the samples

involved in its expression. For example, sin[ 1
2
πx(n)] sin[ 1

2
πx(n −

2)] has diagonal number 2. We can see that the system is odd (since

only odd terms are selected) and that low diagonal numbers are se-

lected in the first terms. According to Figure 1, if a compact rep-

resentation is desired, we could model the system with a simplified

filter (EMFN or Volterra) with maximum diagonal number 5 or 6.

Also from this viewpoint, the EMFN filter provides results at least

as good as the Volterra filter.

6. CONCLUSIONS AND OPEN ISSUES

In this paper, we derive periodic sequences which guarantee perfect

orthogonality of the EMFN basis functions on a finite period. A

methodology to build such PPSs, based on the Newton-Raphson

algorithm, is suggested. Using PPSs as input signals, nonlinear

systems can be easily and efficiently identified with the cross-

correlation approach. Identification of a compact representation of

the nonlinear system can be also easily obtained by ranking the basis

functions according to their ability to reduce the MSE. Experimental

results involving the identification of a real nonlinear system are

presented.

Topics not dealt with in this paper, due to space limitations, are

the derivation of PPSs for different filter configurations, such as sim-

plified EMFN filters or linear and EMFN filters.

Open issues include the derivation of some theoretical result

about the minimal length of a PPS for an EMFN filter of order K
and memory N . Reasonably, the minimal length should be around

the number of nonlinear equations Q of the system in (8), but with

the Newton-Raphson method it has been impossible to find PPSs

unless the number of independent variables is larger than Q.

Examples of PPSs can be downloaded from

http://www.units.it/ipl/res_PSeqs.htm.
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