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ABSTRACT

This paper investigates the use of Gaussian processes to detect non-

linearly mixed pixels in hyperspectral images. The proposed tech-

nique is independent of nonlinear mixing mechanism, and therefore

is not restricted to any prescribed nonlinear mixing model. The ob-

served reflectances are estimated using both the least squares method

and a Gaussian process. The fitting errors of the two approaches are

combined in a test statistics for which it is possible to estimate a

detection threshold given a required probability of false alarm. The

proposed detector is compared to a robust nonlinearity detector re-

cently proposed using synthetic data and is shown to provide a better

detection performance. The new detector is also tested on a real hy-

perspectral image.

Index Terms— Nonlinearity detection, Hyperspectral images,

Gaussian processes.

1. INTRODUCTION

The analysis of hyperspectral images has been recognized as an im-

portant tool to infer about the materials present in a scene and about

their relative contribution to the scene [1–3]. Such analysis aims at

unmixing the spectral information present in the hyperspectral image

to identify the composing materials (endmembers) and their abun-

dances in the region from which the data has been acquired. Most

unmixing techniques rely on a parametric mixing model, from which

the parameters must be estimated [4]. The simplest of these models

assumes linear mixing of the endmember contributions [3] (Linear

Mixing Model - LMM). However, it has been recognized that the

mixing in some pixels of a region is actually nonlinear [3–5]. This

finding has triggered a plethora of techniques for analyzing nonlin-

early mixed pixels (see for instance [4–15] and references therein).

Though nonlinear unmixing permits a better understanding of the

endmember contributions, the corresponding analysis techniques are

necessarily more complex than linear unmixing. Hence, it makes

sense to detect the nonlinearly mixed pixels in an image prior to the

analysis. Doing that allows the utilization of the simplest possible

unmixing technique to analyze each pixel.

A possible approach for detecting nonlinearly mixed pixels as-

sumes a parametric model for the nonlinearity. The parameters con-

trolling the nonlinearity are then estimated and hypothesis tests are
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developed based on such estimator. For instance, a single parame-

ter polynomial post-nonlinear mixing model (PPNMM) is assumed

in [16]. The main question about a parametric modeling of the non-

linear mixing is whether the chosen model is capable of capturing

the actual nonlinear effects present in the hyperspectral image. This

is a difficult question to answer, as the actual nonlinear mixing tak-

ing place in hyperspectral images is usually unknown. When lit-

tle or nothing is known about the nonlinear mixing mechanism, an

interesting approach is to use nonparametric techniques to obtain

information about the nonlinearity directly from the observed data.

Nonparametric nonlinearity modeling is not new. For instance, Chen

et al. [12] introduced a nonlinear unmixing technique using kernel-

based expansions. However, the work in [12] is not concerned about

nonlinearity detection. Recently, Altmann et al. [17] proposed a ro-

bust nonlinear mixture detector that does not use a parametric model

for the nonlinear mixture. The detector is based on the fact that linear

mixing confines the noiseless data to a low-dimensional hyperplane.

The hypothesis test thus uses the distance between the observed pixel

and that hyperplane. The alternative hypothesis is characterized by

an extra deterministic contribution to the mean value of the obser-

vations. Though the test proposed in [17] is robust to the actual

nonlinear mixing mechanism, it conveys too little information about

the nonlinearity as a tradeoff to guarantee simplicity.

In this paper we propose a new robust nonlinearity mixing test

that captures more information about the nonlinearity. We propose

to model the contribution of the endmembers to the observations us-

ing a Gaussian process (GP). The nonlinearity is estimated from the

GP and compared to the linear least squares (LS) LMM estimator

for the same data. A hypothesis test is then proposed based on the

linear and nonlinear estimation errors. As in [17] we assume that the

endmembers are available or have been estimated by an appropriate

endmember extraction algorithm.

2. MIXING MODELS

The LMM [3] is described as

y = Ma+ n, (1)

where y is the L-dimensional observed pixel, L being the number

of spectral bands, M is the L × R endmember matrix, R is the

number of endmembers, a is the R-dimensional abundance vector,

and n is the additive noise assumed to be Gaussian with zero mean

and covariance matrix σ2
nI , that is, n ∼ N (0L, σ

2
nI), where I is

the identity matrix. The abundances must also obey the following

constraints

R∑

r=1

ar = 1, ar ≥ 0, ∀r ∈ {1, . . . , R}. (2)
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For better understanding of (4) below, it is important to notice that,

under the LMM (1), the ith component yi of y is given by yi =
a⊤mi + ni where mi is the transpose of the ith row of M . In the

case of a general mixing, we represent the observation vector y as

y = g(M) + n. (3)

We suggest to model g(M) as a realization of a GP that describes a

distribution over functions.

3. GP REGRESSION

By analogy with the LMM, which writes yi = a⊤mi+ni, consider

modeling the ith row of (3) in a nonlinear way as

yi = f(mi) + ni, (4)

where ni ∼ N (0, σ2
n) and f(·) is a smooth latent function. In the

context of GPs, we define a Gaussian prior for f(·) with zero mean1

and covariance function k(·, ·). Following [18] and considering the

training set {y,X}, with inputs X = [m1, . . . ,mL], and outputs

or observations y = [y1, . . . , yL]
⊤, the GP prior distribution for y

can be written as

y ∼ N
(
0,K + σ2

nI
)
, (5)

with K the Gram matrix whose entries Kij = k(mi,mj) are the
kernel (covariance) functions [19] of the inputs mi and mj (rows

of M ), and I is the L× L identity matrix.

GP regression aims at inferring the latent function distribution of

f∗ for a new (or test) input m∗. Using the marginalization prop-

erty [18], (5) can be rewritten as

[
y

f∗

]
∼ N

(
0,

[
K + σ2

nI k∗

k⊤
∗ k∗∗

])
(6)

with k⊤
∗ = [k(m∗,m1), . . . , k(m∗,mL)] and k∗∗ = k(m∗,m∗).

The predictive distribution of f∗, or posterior of f∗, can be obtained

by conditioning (6) on the data as

f∗|y,X,m∗ ∼ N
(
k
⊤

∗

[
K + σ2

nI
]−1

y ,

k∗∗ − k
⊤

∗

[
K + σ2

nI
]−1

k∗

)
.

(7)

The extension to a multivariate predictive distribution with test data

X∗ = [m∗1, . . . ,m∗L] is straightforward and yields

f
∗
|y,X,X∗ ∼ N

(
K

⊤

∗

[
K + σ2

nI
]−1

y ,

K∗∗ −K
⊤

∗

[
K + σ2

nI
]−1

K∗

) (8)

where [K∗]ij = k(m∗i,mj) and [K∗∗]ij = k(m∗i,m∗j).
Different kernels can be used in (8) [18]. Here we use the Gaus-

sian kernel

k(mp,mq) = σ2
f exp

{
−

1

2s2
‖mp −mq‖

2

}
(9)

for its smoothness and non-informativeness, as we lack any knowl-

edge about the unknown function f(·). Hence, the function esti-

mation is done in a reproducing kernel Hilbert space (RKHS) with

universal approximating capability [20, p. 35].

1The zero mean can be considered even for hyperspectral signatures since
we can first subtract the pixel by its mean.

We estimate the noise variance and the kernel hyperparameters

in θ = {σ2
f , s

2, σ2
n} by maximizing the marginal likelihood function

p(y|X,θ). Hence,

θ̂ = arg
θ
max log p(y|X,θ) (10)

where

log p(y|X,θ) =−
1

2
y
⊤
[
K + σ2

nI
]−1

y −
1

2
log |K + σ2

nI|

−
L

2
log(2π).

Using the minimum mean squared error (MMSE) criterion, the

predictor ŷg of f is defined as the mean of the predictive distribution

in (8). Hence,

ŷg = f̂
MMSE

∗
= K

⊤

∗

[
K + σ2

nI
]−1

y. (11)

4. NONLINEAR MIXTURE DETECTOR

Given an observation vector y, we formulate the nonlinear mixture

detector as the following binary hypothesis test problem
{
H0 : y = Ma+ n

H1 : y = g(M) + n
(12)

where we assume that the endmember matrix M is available or has

been estimated from the image using an endmember extraction tech-

nique [5].

We propose to compare the fitting errors resulting from estimat-

ing y using an LS estimator and the GP-based estimator (11). Under

hypothesisH0, both the LS and the GP-based estimators should pro-

vide good estimates, while under H1 the LS estimation error should

be significantly larger than that resulting from the GP-based estima-

tion. Next, we describe the two estimation errors.

4.1. LS fitting error

The LS estimation error is given by

eℓ = y − ŷℓ (13)

where ŷℓ = Mâ is the LS estimator of f , with

â = (M⊤
M)−1

M
⊤
y. (14)

Then, simple calculation yields

eℓ = Py (15)

where P = I −M(M⊤M)−1M⊤ is an L×L projection matrix

of rank ρ = L−R.

4.2. GPM fitting error

The GP-based estimation error is given by

eg = y − ŷg (16)

where ŷg is determined using (11) with X∗ = X . This is be-

cause our interest is to evaluate the fitting between the model and

the available data, and not to make predictions for new data. Hence,

the fitting error from (11) becomes

eg = y − f̂
MMSE

∗

∣∣∣
X∗=X

= Hy (17)

where H = IL − K⊤
[
K + σ2

nI
]−1

is a real-valued symmetric

matrix of rank L.
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4.3. The test statistics

To decide between the two hypotheses H0 and H1 we propose to

compare the squared norms of the two fitting error vectors. In doing

that, we also need a test statistics whose distribution is known or at

least can be approximated, so that a test threshold can be adjusted

from a given probability of false alarm (PFA) and the detector can

be designed. Given these objectives, we propose the test

T =
2‖eg‖

2

‖eg‖2 + ‖eℓ‖2

H1

≶
H0

τ, (18)

where τ is the detection threshold. The reasoning behind the choice

of T is as follows. First, as eℓ and eg have zero-mean Gaussian dis-

tributions, both ‖eg‖
2 and ‖eℓ‖

2 are chi-square random variables.

Now, we write eℓ as eg + ǫ, where ǫ is assumed to be also Gaussian

and neglect the cross-term 2e⊤
g ǫ, compared to ‖ǫ‖2, when evaluat-

ing ‖eℓ‖
2 under H0. The latter approximation is due to the lack of

correlation between eg and ǫ, which can be largely attributed to mis-

matches resulting from the numerical optimization required to solve

(10). Under these considerations and defining Z = ‖eg‖
2, (18) can

be written as T = 2Z/(Z + ‖ǫ‖2) with both Z and ‖ǫ‖2 indepen-

dent and chi-square distributed. Such a statistics is known to follow

a Beta distribution [21].

As the GP-based estimator tends to fit better a nonlinearly mixed

data, T should be less than 1 under hypothesis H1. Conversely, T
should be close to one for linearly mixed pixels, as ‖ǫ‖2 tends to be

much less than 2‖eg‖
2. Hence, as per (18), we accept H0 if T > τ

and we conclude for the nonlinear mixing (ofH1) if T < τ .

5. EXPERIMENTS

This section presents experiments using synthetic and real data.

5.1. Synthetic Data

To test the performance of the detection method proposed in the pre-

vious section, we generated synthetic data that contain both linearly

and nonlinearly mixed pixels. The amount of nonlinearity is charac-

terized by a degree of nonlinearity. The linearly mixed pixels were

generated using the LMM (2) with a known matrix M . The nonlin-

early mixed pixels were generated using the simplified generalized

bilinear model (GBM) used in [17], with a new scaling that permits

the control of the degree of nonlinearity for each nonlinear pixel gen-

erated. More precisely, the nonlinearly mixed pixels were generated

using the following model

y = κMa+ µ+ n (19)

where 0 ≤ κ ≤ 1, µ = γ
∑R−1

i=1

∑R

j=i+1
aiajmi⊙mj is the non-

linear term, γ is the parameter that governs the amount of nonlinear

contribution, and ⊙ is the Hadamard product. Given the parameters

M , a, γ and σ2
n, this model generates samples with same energy

and SNR as the LMM if

κ =
[
−2Eℓµ +

√
4E2

ℓµ − 4Eℓ(Eµ − Eℓ)
]
/2Eℓ (20)

where Eℓ = ‖yℓ‖
2 is the energy of a noiseless linear pixel (i.e.,

a⊤M⊤Ma), Eℓµ = y⊤

ℓ µ is the “cross-energy” of the linear and

nonlinear parts, and Eµ = ‖µ‖2 is the energy of the nonlinear con-

tribution. The degree of nonlinearity of a pixel is then defined as the

ratio of the nonlinear portion to the total pixel energy

ηd =
2κEℓµ + Eµ

κ2Eℓ + 2κEℓµ + Eµ

. (21)

For the simulations presented here, the endmember matrix M

was composed of R = 3 materials (green grass, olive green paint

and galvanized steel metal) extracted from the spectral library of the

software ENVITM [22]. Each endmember mr has L = 826 bands

that were uniformly decimated to L = 83 bands for simplicity. The

abundance vector a = [0.3, 0.6, 0, 1]⊤ was arbitrarily fixed, and

σ2
n = 0.0011 was chosen to produce an SNR of 21dB for both linear

and nonlinear samples.

Figure 1 presents the empirical Receiver Operating Character-

istic (ROC) curves for both the LS-based detector presented in [17]

and the GP detector (18) for γ = 1 (ηd = 0.21), γ = 3 (ηd = 0.55)
and γ = 5 (ηd = 0.80). It can be verified that the GP detector

presents an improved performance in all three cases. As an example,

for γ = 3 and PFA = 0.1 the LS detector has a probability of detec-

tion (PD) in the order of 0.45, while the GP detector has PD ≈ 0.9.
These results indicate that the extra computational complexity re-

quired by the GP detector is justified for detecting nonlinearly mixed

pixels independently of the nonlinear mixing model.
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(a) LS detector [17].
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(b) GP based detector.
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(c) GP vs. LS detectors.

Fig. 1: (a) Empirical ROCs for the LS-based detector for 20,000

synthetic samples (10,000 for each hypothesis). (b) Empirical ROCs

for the GP detector for 4,000 samples (2,000 for each hypothesis).

The data was generated using (2) and (19), and the nonlinear pixels

were generated with γ = [1, 3, 5] (ηd = [0.22, 0.55, 0.80]). (c)

Comparison of the empirical ROCs for GP and LS detectors for γ =
3 and 4,000 samples. The noise power σ2

n was chosen in the three

tests to obtain a SNR of 21dB.

5.2. Unknown M

In this section we illustrate the sensitivity of the detection perfor-

mance to the endmember estimation as a function of the degree of

nonlinearity. These results are for an endmember extraction using

the well-known vertex component analysis (VCA) [23]. Figure 2

presents the results of 4 experiments using synthetic data with 5,000

samples, SNR of 21dB, random abundances, and proportion of non-

linearly mixed pixels in the image varying from 10% to 50%. For

every experiment, the endmember matrix was extracted using VCA.

These results show how the detection performance can degrade as
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the number of nonlinear pixels increases and VCA looses accuracy

in extracting the endmembers from the image. Thus, alternatives to

VCA must be sought for nonlinearly-mixed pixels.
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Fig. 2: ROCs for different proportions of nonlinearly mixed pixels.

5.3. Real Data

To test the GP detector using real images, we used the well-known

data set available at the Indian Pines test site in North-western In-

diana [24]. This image was captured by the AVIRIS (Airborne Vis-

ible/Infrared Imaging Spectrometer), and has 145 × 145 samples.

Each sample has 220 contiguous bands with wavelengths ranging

from 366 to 2497 nm. Prior to analysis, noisy and water absorption

bands were removed resulting in a total of 200 bands that were deci-

mated to 50 to speed up simulations. The data set has a ground truth

map that divides the samples in 17 mutually exclusive classes. Fig-

ure 3(a) displays an image with 50×50 pixels from the Indian Pines

region. Figure 3(b) presents the ground truth map for this image,

where each class is represented by a different color. The detection

was performed in small 10 × 10 windows of the original 50 × 50
image at a time. For each window, the endmembers were locally

extracted as follows:

1. a principal component analysis (PCA) was performed on the

pixels belonging to a given class included in this window. The

vector associated with the largest eigenvalue was selected for

each class;

2. the data belonging to a given class of this window were pro-

jected onto the corresponding eigenvector, and the residual

error between each pixel and its projection was computed;

3. we computed one endmember per class by averaging the 50%

of the pixels having the smallest residual error.

Once the endmember matrix had been estimated as described above,

we computed a detection threshold for each window as follows:

1. we created an image with the linear model Y s = M̂Â, us-

ing the endmember matrix M̂ extracted as described above.

Matrix Â was computed using LS;

2. we then computed the detection test statistics T |H0 underH0

defined in (18);

3. finally, we computed the test threshold from the given PFA

and the inverse cumulative distribution of the beta distribu-

tion.

The detection threshold was determined as described above for a

PFA = 0.001. Figure 4 shows the pixels detected as non-linearly

mixed (indicated by black circles) superimposed to the ground truth.

The nonlinear mixtures are mainly detected close to the the class

boundaries and in the background.
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(a) Indian Pines.
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(b) Ground Truth.

Fig. 3: (a) Part of the Indian Pines image with 50 × 50 pixels. (b)

Ground truth (each color corresponds to a given material).
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Fig. 4: Detection map: black circles indicate the pixels detected as

non-linearly mixed.

6. CONCLUSIONS

A GP-based nonlinearity detection strategy was introduced to detect

nonlinearly mixed pixels in hyperspectral images. The proposed de-

tector does not require the use of a parametric model for the under-

lying nonlinear mixing function. Simulations using synthetic data

indicate that the proposed detector outperforms a robust method pre-

viously presented in the literature. The detector was also tested on

the Indian Pines image showing that pixels close to the class bound-

aries and in the background seem to be non-linearly mixed. Future

work includes joint detection of nonlinear mixtures and unmixing.
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