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ABSTRACT
Following recent contributions in non-linear sparse represen-
tations, this work focuses on a particular non-linear model,
defined as the nested composition of functions. Recalling that
most linear sparse representation algorithms can be straight-
forwardly extended to non-linear models, we emphasize that
their performance highly relies on an efficient computation of
the gradient of the objective function. In the particular case of
interest, we propose to resort to a well-known technique from
the theory of optimal control to evaluate the gradient. This
computation is then implemented into the “`1-reweighted”
procedure proposed by Candès et al., leading to a non-linear
extension of it.

Index Terms— Non-linear sparse representation, dy-
namic programming, `0-norm relaxation

1. INTRODUCTION

The sparse model assumes that a signal can be represented,
exactly or approximatively, by a number of elements much
smaller than its dimension. Exploited for more than twenty
years, this model has proved to be a good prior for many
types of signals in a variety of domains including audio [1]
and image [2] processing and is at the heart of the recent
compressive-sensing paradigm [3].

Standard sparse representation procedures focus on linear
observation models, that is

y = Hx+ n, (1)

where y is the observed data, say of dimension N , x is as-
sumed to be sparse (i.e., contains very few non-zero elements)
in a larger space of dimension M ≥ N and n stands for some
observation noise. Recovering x from y then requires to solve
a problem of the form (or some variants thereof):

x̂ = argmin
x
‖x‖0 subject to ‖y −Hx‖22 ≤ ε, (2)

where ‖.‖0 denotes the `0 pseudo-norm which counts the
number of non-zero elements in its argument and ε > 0
controls the reconstruction error.

In practice, the linear observation model may be poorly
adapted to many situations. As an example, we can mention

the compressive phase retrieval problem, which aims at recov-
ering a sparse signal from the knowledge of the amplitudes of
some complex linear measurements (see e.g., [4, 5]). Hence,
recent contributions have addressed the problem of exploiting
sparse priors with non-linear observation models, that is

y = h(x) + n, (3)

for some non-linear observation operator1 h : RM → RN .

Extending the approach followed in the linear case, these
contributions consider a generalized version of problem (2)

x̂ = argmin
x
‖x‖0 subject to J(x) ≤ ε, (4)

where J(x) : RM → R+ is some scalar function (e.g.,
J(x) = ‖y − h(x)‖22) accounting for model (3).

In this paper, we are interested in a particular case of non-
linearity, where the penalty function J(x) is defined as the
nested composition of some functions. Formally, we write

J(x) =

L∑
l=1

Jl ◦ fl ◦ . . . ◦ f1(x), (5)

where {fl}Ll=1 and {Jl}Ll=1 are some differentiable functions
such that f1 : RM → RP , fl : RP → RP , ∀l ∈ {2, . . . , L}
and Jl : RT → R+, ∀l ∈ {1, . . . , L}, and ◦ stands for the
function-composition operator. This type of model is for in-
stance of interest in the ubiquitous situations where one col-
lects partial information on the state of a dynamical system
whose initial condition admits a sparse decomposition (see
section 3). In particular, we emphasize that results from opti-
mal control [6] can be exploited to provide a fast implemen-
tation of any gradient-based algorithm by taking benefit of
the special structure of the non-linear model (5). We propose
then a practical implementation of this computation into the
optimization procedure proposed in [7].

1We restrict here our exposition to the real case, but similar reasoning can
be conducted in the complex case.
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2. SPARSE REPRESENTATION AND GRADIENT
EVALUATION

2.1. Sparsity-constrained linear models

In the literature addressing the standard sparse representation
problem (2), many computationally-efficient procedures rely
(often implicitly) on the fact that the evaluation of the gradient
of J(x) = ‖y −Hx‖22 involves a low computational burden.
More specifically, letting ∇x , [ ∂

∂x1
, . . . , ∂

∂xM
]T , we have

that the gradient of J(x) evaluated at some point x? can be
written as

∇xJ(x
?) = −2HT (y −Hx?). (6)

We note that the evaluation of ∇xJ(x
?) only requires mul-

tiplications by the dictionary H and its transpose HT . In
the case of general dictionaries, the complexity associated
with the evaluation of the gradient thus scales as O(MN).
This constitutes one of the key ingredients of the success
of several procedures efficiently tackling high-dimensional
problems. Among others, we can mention the procedures
based on a relaxation of the `0 pseudo-norm (e.g., FISTA
[8], reweighted `1 norm [7]), the family of thresholding al-
gorithms (e.g., IHT [9]), or the greedy procedures (e.g., MP
[10], OMP [11], CoSaMP [12]) which sequentially update a
support estimate by including the element xj leading to the
highest local descent of J(x) (that is the element with the

largest absolute partial derivative |∂J(x
(k))

∂xj
|, where x(k) is the

current estimate).

2.2. Sparsity-constrained non-linear models

It is noticeable that many algorithms mentioned above, when
expressed in terms of the gradient of J(x), can straightfor-
wardly be applied to non-linear sparse representation prob-
lems. Following this idea, the principles underlying IHT, MP,
OMP and CoSaMP have for example been extended to the
non-linear setting in [13], [14], [15] and [16] respectively.
Similarly, relaxed problems, more specifically based on a `1
relaxation of the `0 pseudo-norm, have been devised for con-
straints of particular form J(x) = ||y − h(x)||22. In [17], the
authors consider the noiseless case (ε = 0 in (4)) and pro-
pose to approximate h by its Taylor expansion reducing the
non-linear term to a quadratic expression and allowing then
the use of lifting techniques. A similar idea is applied in [18]
to a non-linear operator h defined as a nested composition of
functions. The initial optimization problem is thus reformu-
late as a quadratic programming problem through a first-order
linearization.

The tractability of these extensions is however highly de-
pendent on the efficient evaluation of the gradient ∇xJ(x).
In this paper, we elaborate on this problem for the particular
family of cost functions J(x) defined in (5). Our exposition
is based on the well-known theory of optimal control which
traces back to the 70’s (see e.g., [6]).

2.3. Efficient gradient computation

Considering (5), the gradient of J(x) evaluated at some point
x? is written as

∇xJ(x
?) =

L∑
l=1

∇x (Jl ◦ fl ◦ . . . ◦ f1) (x?), (7)

by virtue of the linearity of the operator∇x.
Let us make two remarks. First, the composed function

Jl ◦ fl ◦ . . . ◦ f1 does not have any simple analytical expres-
sion in many situations; in such cases, we have therefore to re-
sort to the chain rule of derivatives of composed functions to
evaluate its gradient. Second, the functions {fl}Ll=1 appear in
each term of J(x) in a structured manner and this fact should
be taken into account in any efficient evaluation of∇xJ . This
is the goal of the procedure described hereafter.

Let us define, ∀l ∈ {1, . . . , L}, ∀x ∈ RM ,

sl , fl ◦ . . . ◦ f1(x), (8)

and at the particular point of interest x?: s?l , fl◦. . .◦f1(x?).
Clearly, with this definition, ∀l ∈ {1, . . . , L}, sl = fl(sl−1),
and (5) evaluated at x? can be rewritten as

J(x?) =

L∑
l=1

Jl(s
?
l ). (9)

Therefore, using the chain rule of derivatives, we obtain2

∇xJ(x
?) =

L∑
l=1

∇xfl(s
?
l−1)

T ∇slJl(s
?
l ),

with the convention s0 = x (resp. s?0 = x?), and from the
dependence between sl and sl−1,

∇xfl(s
?
l−1)

T = ∇xfl(fl−1(s
?
l−2))

T ,

= ∇xfl−1(s
?
l−2)

T ∇sl−1
fl(s

?
l−1)

T . (10)

Applying this expression recursively, we finally have

∇xJ(x
?) =

L∑
l=1

 l∏
j=1

∇sj−1
fj(s

?
j−1)

T

 ∇slJl(s
?
l ). (11)

On the one hand, we note that the latter expression does
no longer involve the derivation of some composed functions
but is exclusively based on the derivative of each component
function. On the other hand, some care has to be taken in
order to avoid unnecessary computational burden in the eval-
uation of (11). This gives rise to the following backward-
forward procedure:

2If fl(s?l−1), [fl,1, ..., fl,P ]T , the operator ∇x applied to fl(s
?
l−1)

T

results in the M × P matrix whose (i, j)-th element is
∂fl,j
∂xi

.
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• The sequence {s?l }Ll=1 is evaluated via the forward re-
cursion

s?0 = x?, (12)
s?l = fl(s

?
l−1). (13)

• All multiplications by a same matrix ∇sl−1
fl(s

?
l−1)

T

are gathered in one single operation. This is done
through the backward recursion

pL = ∇L−1fL(s
?
L−1)

T ∇sLJL(s
?
L), (14)

pl = ∇l−1fl(s
?
l−1)

T (∇slJl(s
?
l ) + pl+1), (15)

leading finally to p0 = ∇xJ(x
?). In that way, the mul-

tiplication by each matrix ∇sl−1
fl(s

?
l−1)

T is only per-
formed once during the whole recursion.

This backward-forward procedure is widely used in geophys-
ical applications (e.g., [19]). However, to the best of our
knowledge, the explicit (and motivated) use of this technique
into contexts of sparsity-constrained problems has never been
considered. In particular, in [18] which focuses on a similar
non-linear model, this efficient computation of the gradient is
not proposed.

3. SPARSE REPRESENTATIONS IN DYNAMICAL
MODELS

We emphasize that the structure of the cost function in (5) is
well-suited to the characterization of dynamical systems with
partial state information. Let us indeed consider a dynamical
system characterized by a generic state evolution equation

sl = fl(sl−1) ∀l ∈ {2, . . . , L}. (16)

Assume moreover, that noisy partial observations of the states
are collected at each time, that is

yl = gl(sl) + n, (17)

where {gl}Ll=1 are some differentiable functions. A typical
problem encountered in many domains of applications con-
sists in recovering the sequence of {sl}Ll=1 from the collected
observations {yl}Ll=1. In the quite common case where the
dimension of the collected data is inferior to the number
of unknowns, one has to include an extra constraint on the
sought vector in order to hope achieving a consistent estima-
tion. Hereafter, we will assume that the initial state is sparse
in some redundant dictionary H, that is

s1 = Hx, (18)

for some sparse vector x. One possible formulation of the
state estimation problem is therefore as follows

min
x
‖x‖0 subject to

{ ∑L
l=1 ‖yl − gl(sl)‖22 ≤ ε,

sl = fl(sl−1), s1 = Hx.
(19)

Obviously, this problem can be reformulated as (4) with a cost
function satisfying (5) by setting Jl(z) , ‖yl − gl(z)‖22. The
methodology described in this paper is therefore well-suited
for gradient evaluation in this type of setup.

It is noticeable that many dynamical models typically
evolve in high-dimensional spaces, leading in turn to sparse-
representation problems of very high dimensions. In such
settings, an efficient evaluation of the gradient of J(x) turns
out to be crucial for the tractable search of a solution of (4).
In particular, any attempt to evaluate∇xJ(x) by any standard
numerical means (e.g., finite differences) is computationally
intractable.

4. RESULTS: APPLICATION TO SQG MODEL

As an example of the methodology presented in this paper, we
consider a non-linear sparse-representation problem in a par-
ticular geophysical application. More specifically, we focus
on the characterization of the state of the ocean by exploiting
the Surface Quasi-Geostropic (SQG) dynamical model [20].

The SQG model assumes that some geophysical quantity
s(u, t) (the so-called “buoyancy”) obeys the following partial
differential equation

∂

∂t
s(u, t) + (∇⊥∇−1/2s(u, t))T ∇us(u, t) = 0, (20)

in which u ∈ R2 and t ∈ R play the respective roles of
spatial and temporal variables, and ∇⊥∇−1/2 is a vectorial
differential operator whose definition can be found in [20]. In
the sequel, we will consider a discretized version of (20), of
the form of the state equation (16). This discretized model is
built by means of a standard 4th-order Runge-Kutta numerical
integration scheme [21].

Satellites collect partial information {yl}Ll=1 about the
buoyancy at different time instants. We assume hereafter that
each observation yl is related to the state of the system sl (but
not directly to x) by a noisy linear observation model:

yl = Gl sl + n, (21)

where ∀l ∈ {1, . . . , L}, Gl ∈ R
N
L×P with N ≤ PL.

The goal is then to recover the buoyancy from the low-
dimensional information provided by the satellite by exploit-
ing: i) the geophysical model (20), nesting the buoyancy at
different time instants; ii) the sparse decomposition of the ini-
tial condition s1 in some redundant dictionary H, see (18).

At this point, the question is posed about the choice of the
optimization procedure. As emphasized in section 2.2, pro-
viding an efficient evaluation of the gradient of the cost func-
tion, different well-known sparse optimization algorithms can
be considered. Here, we propose to formulate the optimiza-
tion problem as

min
x

L∑
l=1

‖yl −Gl(fl ◦ . . . f2(Hx))‖22 + λ r(x), (22)
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Fig. 1. Relative MSE versus the number of non-zero coeffi-
cients K in the sparse vector.

where λ > 0 and r(x) is some sparsity-enforcing regularizing
function. In our simulation, we chose r(x) =

∑
m log(xm +

ε), with ε = 10−1. Then our optimization procedure follows
the majorization-minimization technique exposed in [7]; at
each iteration an upper bound on the goal function is con-
structed by majorizing r(x) by a weighted `1 norm. We look
for the minimum of each of these majorizing functions by
means of descent procedures involving the gradient of J(x)
evaluated as exposed in section 2.3.

Particularized to the SQG model, the evaluation of the for-
ward and backward recursions (13)-(15) have a complexity
of order O(ML). By comparison, using a finite-difference
scheme to evaluate the gradient requires to run (at least) two
forward recursions by element of x, leading to an overall
complexity of O(M2L). This order of complexity thus pre-
cludes us from using this type of approach in moderate-to-
high dimensional problems.

The simulation setup considered in this paper is as
follows. The state vectors sl are assumed to live in 256-
dimensional space. The initial condition is supposed to have
a sparse decomposition x in a dictionary H ∈ R256×512

made up of sine and cosine functions. These dimensions have
been chosen for the sake of running extensive simulation. We
note that in practical SQG setups, the dimension of x is of
the order of 5122 or 10242. The positions of the non-zero
coefficients in x are randomly chosen. Their amplitudes are
drawn from a zero-mean Gaussian distribution with variance
σ2
x = 10. The observations yl ∈ R16 are collected at L = 4

different time instants and the observation matrices Gl corre-
spond to random subsampling operators. The ratio between
the number of observations N = 16×4 and the dimension of
x is therefore equal to 64/512 = 1/8. Finally, we consider
a small observation noise, drawn from zero-mean Gaussian
distributions with variance σ2 = 10−9 (quasi-noiseless sce-
nario). In Fig. 1, we represent the relative mean-square error
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Fig. 2. Error probability versus the number of non-zero coef-
ficients K in the sparse vector.

(MSE) ||x̂ − x||22/||x||22 achieved by the minimization of
(22) via the majorization-minimization procedure described
above. As a point of comparison, we run the same algorithm
on a linear sparse representation problem having the same
problem dimensions (namely y = GHx where G is a rate-
1/4 random subsampling matrix). For each data point, we
average the performance over 50 trials.

We can notice that the considered procedure can achieve
an acceptable relative mean square error over a wide range of
sparsity levels. We note also that the non-linear setup suffers
from a reasonable degradation with respect to the linear setup.
This tendency is confirmed in Fig. 2 which illustrates the
probability of making at least one error on the support of the
sought sparse vector.

5. CONCLUSION

In this paper, we address the problem of sparse representa-
tions in a non-linear setting. We emphasize that the computa-
tion of the gradient of the cost function may be a bottleneck
for the extension of standard estimation procedures. We show
that this computation may be handled efficiently, by apply-
ing principles from the theory of optimal control, as long as
the cost function satisfies some desirable structural property.
Our derivations are illustrated on a particular example dealing
with the estimation of the state of a geophysical system from
partial observations.
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