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ABSTRACT

This paper introduces a novel sub-class of linear-in-the-parameters

nonlinear filters, the Legendre nonlinear filters. Their basis func-

tions are polynomials, specifically, products of Legendre polynomial

expansions of the input signal samples. Legendre nonlinear filters

share many of the properties of the recently introduced classes of

Fourier nonlinear filters and even mirror Fourier nonlinear filters,

which are based on trigonometric basis functions. In fact, Legen-

dre nonlinear filters are universal approximators for causal, time in-

variant, finite-memory, continuous, nonlinear systems and their basis

functions are mutually orthogonal for white uniform input signals. In

adaptive applications, gradient descent algorithms with fast conver-

gence speed and efficient nonlinear system identification algorithms

can be devised. Experimental results, showing the potentialities of

Legendre nonlinear filters in comparison with other linear-in-the-

parameters nonlinear filters, are presented and commented.

Index Terms— Nonlinear system identification, linear-in-the-

parameters nonlinear filters, universal approximators, orthogonality

property.

1. INTRODUCTION

Linear-in-the-parameters (LIP) nonlinear filters constitute a broad

class of nonlinear models, which includes most of the commonly

used finite-memory or infinite-memory nonlinear filters. The class

is characterized by the property that the filter output depends lin-

early on the filter coefficients. Among LIP filters, the most popular

are the truncated Volterra filters [1], still actively studied and used

in applications [2, 3, 4, 5, 6, 7, 8, 9]. Other elements of the class

include particular cases of Volterra filters, as the Hammerstein fil-

ters [1, 10, 11, 12, 13], and modified forms of Volterra filters, as

memory and generalized memory polynomial filters [14, 15]. Filters

based on functional expansions of the input samples, as functional

link artificial neural networks (FLANN) [16] and radial basis func-

tion networks [17], also belong to the LIP class. A review under

a unified framework of finite-memory LIP nonlinear filters can be

found in [18]. Infinite-memory LIP nonlinear filters have also been

studied [19, 20, 21, 22, 23] and used in applications.

Recently, Fourier Nonlinear (FN) filters [24, 25] and Even Mir-

ror Fourier Nonlinear (EMFN) filters [26, 25] have been added to

the finite-memory LIP class. FN and EMFN filters derive from the

truncation of a multidimensional Fourier series expansion of a peri-

odic repetition or an even mirror periodic repetition, respectively, of

the nonlinear function we want to approximate. They are based on

trigonometric function expansions as the FLANN filters. Differently

from the FLANN filters, the FN and EMFN basis functions form an
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algebra that satisfies all the requirements of the Stone-Weierstrass

approximation theorem [27]. Consequently, these filters can arbi-

trarily well approximate any causal, time invariant, finite-memory,

continuous, nonlinear system, as the well known Volterra filters. In

contrast to Volterra filters, their basis functions are mutually orthog-

onal for white uniform input signals in [−1,+1]. This property, is

particularly appealing since it allows the derivation of gradient de-

scent algorithms with fast convergence speed. Moreover, efficient

identification algorithms for nonlinear systems can be devised. Be-

tween the two filter classes, EMFN filters should be the family of

choice since they are able to provide a much more compact rep-

resentation of nonlinear systems than FN filters [25]. In terms of

modelling performance, it has been shown that EMFN filters can be

better models than Volterra filters in presence of strong nonlineari-

ties. In contrast, for weak or medium nonlinearities Volterra filters

should be preferred to EMFN filters [25].

In this paper, we introduce a novel sub-class of finite-memory

LIP nonlinear filters based on orthogonal polynomials. While the

approach to introduce the novel filter class can be applied to any

family of orthogonal polynomials defined on a finite interval, we

specifically focus on the class of Legendre polynomials, which have

been already considered for nonlinear filtering [28, 29]. Thus, the

novel LIP nonlinear filters are named Legendre Nonlinear (LN) fil-

ters. They are based on polynomial basis functions as the Volterra fil-

ters, and present properties similar to FN and EMFN filters. Specif-

ically, their basis functions satisfy all the requirements of the Stone-

Weierstrass approximation theorem and thus LN filters are univer-

sal approximators, as well as the Volterra, FN, and EMFN filters.

Their basis functions are orthogonal for white uniform input signals

in [−1,+1] and thus LN filters share all the benefits offered by FN

and EMFN filters in terms of convergence speed of gradient descent

adaptation algorithms and efficient identification algorithms. More-

over, since LN filters are based on polynomial basis functions in-

cluding the linear function, their modelling capabilities are similar

to those of Volterra filters. Therefore, LN filters can provide more

compact models than EMFN filters for weak or medium nonlineari-

ties.

It is worth noting that Legendre polynomials have already

been used for nonlinear filtering in Hammerstein models [28, 29],

FLANN filters [30, 31, 32], and neural networks [33]. Nevertheless,

the approaches of the literature do not make use of cross-terms,

i.e., products between different basis functions, which can be very

important for modelling nonlinear systems [18]. The corresponding

basis functions do not form an algebra, because they are not com-

plete under product. Thus, in contrast to the filters proposed in this

paper, those in [28, 29] are not universal approximators for causal,

time invariant, finite-memory, continuous, nonlinear systems.

The rest of the paper is organized as follows. Section 2 de-
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rives the LN filters and discusses their properties. Section 3 presents

experimental results that illustrate the advantages of the novel LIP

class. Concluding remarks follow in Section 4.

Throughout the paper the following notation is used. Sets are

represented with curly brackets, intervals with square brackets, while

the following convention for brackets:
{[(

· · · {[()]} · · ·
)]}

is used

elsewhere. legi(x) indicates a Legendre polynomial of order i. δij
is the Kronecker delta.

2. LEGENDRE NONLINEAR FILTERS

In this section, we first review the Stone-Weierstrass theorem, which

is used to build the proposed filters, and the Legendre polynomials.

Then we derive the class of LN filters and discuss their properties.

The proposed approach can be applied also to other classes of or-

thogonal polynomials, originating other similar families of nonlinear

filters.

2.1. The Stone-Weierstrass theorem

The input-output relationship of a time-invariant, finite-memory,

causal, continuous, nonlinear system can be expressed by a nonlin-

ear function f of the N most recent input samples,

y(n) = f [x(n), x(n− 1), . . . , x(n−N + 1)], (1)

where the input signal x(n) is assumed to take values in the range

R1 = {x ∈ R, with |x| ≤ 1}, y(n) ∈ R is the output signal, and

N is the system memory.

Equation (1) can be interpreted as a multidimensional function

in the R
N
1 space, where each dimension corresponds to a delayed

input sample. This representation has been already exploited, for

example, to represent truncated Volterra filters, where the nonlinear-

ity is mapped to multidimensional kernels that appear linearly in the

input-output relationship [1].

In the proposed approach, the nonlinear function f [x(n), x(n−
1), . . . , x(n −N + 1)] is expanded with a series of basis functions

fi,

f [x(n), x(n− 1), . . . , x(n−N + 1)] =

+∞
∑

i=1

cifi[x(n), x(n− 1), . . . , x(n−N − 1)], (2)

where ci ∈ R, and fi is a continuous function from R
N
1 to R, for

all i. Every choice of the set of basis functions fi defines a differ-

ent kind of nonlinear filters, which can be used to approximate the

nonlinear systems in (1). We are particularly interested in nonlin-

ear filters able to arbitrarily well approximate every time-invariant,

finite-memory, continuous, nonlinear system. To this purpose, we

apply the well known Stone-Weierstrass theorem [27]:

“Let A be an algebra of real continuous functions on

a compact set K. If A separates points on K and if A
vanishes at no point of K, then the uniform closure B
of A consists of all real continuous functions on K”.

According to the Stone-Weierstrass theorem any algebra of real con-

tinuous functions on the compact RN
1 which separates points and

vanishes at no point is able to arbitrarily well approximate the con-

tinuous function f in (1). A family A of real functions is said to be

an algebra if A is closed under addition, multiplication, and scalar

multiplication, i. e., if (i) f+g ∈ A, (ii) f ·g ∈ A, and (iii) cf ∈ A,

for all f ∈ A, g ∈ A and for all real constants c.

Table 1. Legendre polymomials

leg
0
(x) = 1

leg
1
(x) = x

leg
2
(x) = 1

2
(3x2 − 1)

leg
3
(x) = 1

2
x(5x2 − 3)

leg
4
(x) = 1

8
(35x4 − 30x2 + 3)

leg
5
(x) = 1

8
x(63x4 − 70x2 + 15)

2.2. Legendre polynomials

In this paper, we are interested in developing a class of nonlinear

filters based on Legendre polynomials. These are orthogonal poly-

nomial in R1, i.e.,
∫

1

−1

legi(x)legj(x)dx =
2

2i+ 1
δij . (3)

The Legendre polynomials can be obtained with the following

recursive relation

legi+1
(x) =

2i+ 1

i+ 1
xlegi(x)−

i

i+ 1
legi−1

(x), (4)

with leg
0
(x) = 1 and leg

1
(x) = x. The first six Legendre polyno-

mials are listed in Table 1.

Note that according to (3),
∫

1

−1

legi(x)dx =

∫

1

−1

legi(x)leg
0
(x)dx = 0 (5)

for all i > 0.

The product of two Legendre polynomials of order i and j, re-

spectively, can be expressed as a linear combination of Legendre

polynomials up to the order i+ j [34].

It can be easily proved that the set of Legendre polynomials sat-

isfies all the requirements of Stone-Weierstrass theorem on the com-

pact R1. Thus, we can arbitrarily well approximate any continuous

function from R1 to R with a linear combination of Legendre poly-

nomials.

2.3. LN filters

We are now interested in developing a set of Legendre basis func-

tions that allows us to arbitrarily well approximate any nonlin-

ear system (1). We interpret the continuous nonlinear function

f [x(n), x(n − 1), . . . , (n − N + 1)] as a multidimensional func-

tion in the R
N
1 space, where each dimension corresponds to a

delayed input sample. It is then possible to give account of the

Legendre basis functions in the N -dimensional case, passing from

R1 to R
N
1 . To this purpose, we first consider the 1-dimensional

Legendre basis functions, i.e., the Legendre polynomials, for

x = x(n), x(n− 1), . . . , x(n−N + 1):

1, leg
1
[x(n)], leg

2
[x(n)], leg

3
[x(n)], . . .

1, leg
1
[x(n− 1)], leg

2
[x(n− 1)], leg

3
[x(n− 1)], . . .

...

1, leg
1
[x(n−N +1)], leg

2
[x(n−N +1)], leg

3
[x(n−N +1)], . . .

Then, to guarantee completeness of the algebra under multiplication,

we multiply the terms having different variables in any possible man-

ner, taking care of avoiding repetitions. It is easy to verify that this

family of real functions and their linear combinations constitutes an

algebra on the compact [−1, 1] that satisfies all the requirements of

the Stone-Weierstrass theorem. Indeed, the set of functions is closed
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under addition, multiplication (because of [34]) and scalar multi-

plication. The algebra vanishes at no point due to the presence of

the function of order 0, which is equal to 1. Moreover, it separates

points, since two separate points must have at least one different co-

ordinate x(n − k) and the linear term leg
1
[x(n − k)] = x(n − k)

separates these points. As a consequence, the nonlinear filters ex-

ploiting these basis functions are able to arbitrarily well approximate

any time-invariant, finite-memory, continuous, nonlinear system.

Let us define the order of an N -dimensional basis function as the

sum of the orders of the constituent 1-dimensional basis functions.

Avoiding repetitions, we thus obtain the following basis functions:

The basis function of order 0 is the constant 1.

The basis functions of order 1 are the N 1-dimensional basis func-

tions of the same order, i.e. the linear terms:

x(n), x(n− 1), . . . , x(n−N + 1).

The basis functions of order 2 are the N 1-dimensional basis func-

tions of the same order and the basis functions originated by the

product of two 1-dimensional basis functions of order 1. Avoiding

repetitions, the basis functions are:

leg
2
[x(n)], leg

2
[x(n− 1)], . . . , leg

2
[x(n−N + 1)],

x(n)x(n− 1), . . . , x(n−N + 2)x(n−N + 1)

x(n)x(n− 2), . . . , x(n−N + 3)x(n−N + 1)

...

x(n)x(n−N + 1).

Thus, we have N · (N + 1)/2 basis functions of order 2.

Similarly, the basis functions of order 3 are the N 1-dimensional

basis functions of the same order, the basis functions originated by

the product between an 1-dimensional basis function of order 2 and

an 1-dimensional basis function of order 1, and the basis functions

originated by the product of three 1-dimensional basis functions of

order 1. This constructive rule can be iterated for any order P .

The basis functions of order P can also be obtained by (i) mul-

tiplying in every possible way the basis functions of order P − 1
by those of order 1, (ii) deleting repetitions, and (iii) applying the

following substitution rule for products between factors having the

same time index:

legi(x)leg
1
(x) = legi(x)x −→ legi+1

(x).

In the last passage, the property that the product between two Leg-

endre polynomials is a linear combination of Legendre polynomials

has been exploited. This rule for generating the basis functions of

order P from those of order P − 1 is the same applied for Volterra

filters, thus the two classes of filters have the same number of basis

functions of order P , memory N . In our case, the linear combina-

tion of all the Legendre basis functions of the same order P defines

an LN filter of uniform order P , whose number of terms is
(

N + P − 1

P

)

, (6)

with N is the memory length. The linear combination of all the basis

functions with order ranging from 0 to P and memory length of N
samples defines an LN filter of nonuniform order P , whose number

of terms is (

N + P

N

)

. (7)

By exploiting the orthogonality property of the Legendre poly-

nomials, it can be verified that the basis functions are orthogonal in
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Fig. 1. Learning curves of LN filters with strong nonlinearity for

different values of the step-size.

R
N
1 . Taking two different basis functions fi and fj , the orthogonal-

ity condition is written as
∫

+1

−1

· · ·

∫

+1

−1

fi[x(n), . . . , x(n−N+1)] ·

fj [x(n), . . . , x(n−N + 1)] · dx(n) · · · dx(n−N + 1) = 0,

(8)

which immediately follows since the basis functions are product

of Legendre polynomials which satisfy (3) and (5). As a di-

rect consequence of this orthogonality property, the expansion of

f [x(n), . . . , x(n − N + 1)] with the proposed basis functions is a

generalized Fourier series expansion [35]. Moreover, the basis func-

tions are orthogonal for a white uniform distribution of the input

signal in R1,

∫

+1

−1

· · ·

∫

+1

−1

fi[x(n), . . . , x(n−N+1)]·fj [x(n), . . . , x(n−N+1)]·

·p[x(n), . . . , x(n−N + 1)] · dx(n) · · · dx(n−N + 1) = 0, (9)

where p[x(n), . . . , x(n−N+1)] is the probability density of the N -

tuple [x(n), . . . , x(n−N+1)], equal to the constant 1/2N . As a con-

sequence, as done for FN and EMFN filters, it is possible to devise

for LN filters simple identification algorithms using input signals

with white uniform distributions in the range [−1,+1]. Moreover, a

fast convergence of the gradient descent adaptation algorithms, used

for nonlinear systems identification, is expected in this situation.

In contrast to FN and EMFN filters, the LN filters have the linear

terms x(n), x(n−1), . . ., x(n−N +1) among the basis functions,

and this property makes these filters better fitted to model weak or

medium nonlinearities, providing efficient models in all those sit-

uations where Volterra filters give efficient models. Thus, the LN

filter class combines the best characteristics of Volterra filters (uni-

versal approximation, presence of a linear term, polynomial basis

functions) and of EMFN nonlinear filters (orthogonality property,

good approximation of strong nonlinearities).

3. SIMULATION RESULTS

To show the potentialities of LN filters, we consider the identifica-

tion of a real-world nonlinear device, i.e., a Presonus TubePRE sin-

glechannel microphone/instrument tube preamplifier. The preampli-

fier provides a drive potentiometer that controls the amount of tube

saturation, i.e., the amount of applied distortion on the output signal.
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Fig. 2. Learning curves with (a) weak, (b) medium, and (c) strong nonlinearity.

The device was connected to a computer running NU-Tech Frame-

work [36] by means of a professional sound card (MOTU 8pre). A

white uniform input signal in the interval [−1,+1] at 48 kHz sam-

pling frequency was applied at the preamplifier input and the corre-

sponding output was recorded on computer. By acting on the drive

control, three different degrees of nonlinearity have been generated

and used in the test: a weak, a medium, and a strong nonlinear-

ity. At the maximum used volume, the amplifier introduces on a 1
kHz sinusoidal input a second order and a third order harmonic dis-

tortion respectively of 11.9% and 3.7% for the weak nonlinearity,

26.2% and 6.8% for the medium nonlinearity, 40.2% and 1.5% for

the strong nonlinearity. The harmonic distortion is defined as the

ratio, in percent, between the magnitude of each harmonic and that

of the fundamental frequency. In all conditions, the nonlinear sys-

tem had memory length of around 20 samples and, thus, the system

was identified using i) a linear filter of 20 sample memory, and ii)

an LN, iii) an EMFN, and iv) a Volterra filter all having memory

of 20 samples, order 3, and 1771 coefficients. An LMS algorithm

adapting all coefficients with the same step-size has been used in the

identification.

When dealing with different nonlinear filter structures we must

take into account that the filters have different modeling abilities,

which translate to different steady state Mean-Square-Errors (MSE),

and different convergence properties. A difficult choice is that of

the step-size of the adaptation algorithm that guarantees a fair com-

parison between the different filters. In the past, this problem was

addressed [26, 25] by choosing the step-size that guarantees similar

initial convergence speed for all nonlinear filters. In this paper, a dif-

ferent approach is proposed. Specifically, the learning curves of the

different filters are compared by choosing for each filter the step-size

that obtains the minimum steady-state MSE with the fastest conver-

gence speed. Indeed, we must take into account that the steady-

state MSE is the sum of three contributes: i) the additive noise, ii)

the modelling error, and iii) the excess MSE generated by the gra-

dient noise. The latter depends on the choice of the step-size and

for a sufficiently small step-size is negligible compared to the first

two contributes. Thus, using the acquired signals, for each filter the

nonlinear system has been identified with different step-sizes. The

corresponding learning curves have been plot on the same diagram

and the largest step-size that reaches the minimum steady-state MSE

(apart from a fraction of dB error) has been annotated. For exam-

ple, Figure 1 shows the learning curves of MSE for the LN filter

in the identification of the preamplifier with strong nonlinearity us-

ing the LMS algorithm with different step-sizes. In Figure 1 (and

also in Figure 2) each learning curve is the ensemble average of 20
simulations of the LMS algorithm applied to non-overlapping data

segments. Moreover, the learning curves have been smoothed using

a box filter of 1000 sample memory length. As we can notice for a

step-size µ ≥ 8 · 10−3 the steady-state MSE is larger than the mini-

mum one, while for µ ≤ 5 · 10−3 almost the same steady-state MSE

is obtained for all curves.

Using the annotated step-sizes, the learning curves of the four

filters have been compared at the different nonlinear conditions. Fig-

ure 2 shows the result of the comparison. The step-size used for each

learning curve is reported in the legend. For a weak nonlinearity, the

linear filter provides fairly good results with steady-state MSE sim-

ilar to those of the nonlinear filters. In contrast, for medium and

strong nonlinearities, the linear filter appears inadequate. The linear

filter and the EMFN and LN filter have orthogonal basis functions

for white uniform input signals, and thus provide a fast convergence

speed of the LMS algorithm. The Volterra filter does not share this

orthogonality property and, indeed, its convergence speed is much

slower than that of the other filters. In the time interval of Figure

2, the Volterra filter does not reach the steady state conditions and

provides a larger MSE than EMFN and LN filters. In this experi-

ment, the LN filter provides in all conditions the best performances.

However, extensive simulations on devices affected by third order

nonlinearities stronger than those used in the previous experiment

showed that quite often EMFN filters are able to give better results

than LN filters.

4. CONCLUSIONS

In this paper, a novel sub-class of polynomial, finite-memory LIP

nonlinear filters, the LN filters, has been introduced. It has been

shown that the LN filters are universal approximators, according

to the Stone-Weierstrass theorem, for causal, time invariant, finite-

memory, continuous, nonlinear systems, as well as the Volterra filters

and the EMFN filters. The basis functions of LN filters are mutu-

ally orthogonal for white uniform input signals, as those of EMFN

filters. Thanks to this orthogonality property, gradient descent al-

gorithms with fast convergence speed and efficient nonlinear system

identification algorithms can be devised. Since the basis functions of

LN filters include the linear terms, these filters are better fitted than

EMFN filters for modelling weak or medium nonlinearities. Thus,

the proposed filters combine the best characteristics of Volterra and

EMFN filters.
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