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ABSTRACT

In this paper, we introduce a novel class of nonlinear filters char-

acterized by two interesting properties: (i) according to the Stone-

Weierstrass approximation theorem, the proposed nonlinear filters

are able to arbitrarily well approximate any discrete-time, time-

invariant, causal, infinite-memory, continuous, nonlinear system;

(ii) the filters are always stable according to the bounded-input-

bounded-output criterion. This novel class includes as a subclass the

finite-memory even mirror Fourier nonlinear filters, which have been

recently introduced as an useful tool for modeling strong saturation

nonlinearities.

Index Terms— Nonlinear systems, linear-in-the-parameters

nonlinear filters, universal approximators, BIBO stability.

1. INTRODUCTION

A model, which is often used in adaptive identification of nonlinear

systems, is that resorting to linear-in-the-parameters (LIP) nonlin-

ear filters. A discrete-time LIP filter is characterized by the linearity

property of its output with respect to the filter coefficients. The class

of LIP nonlinear filters is broad and includes causal, shift-invariant,

finite-memory or infinite-memory filters. The most popular nonlin-

ear models with finite memory are Volterra filters [1] and functional

link artificial neural networks (FLANN) [2] exploiting trigonomet-

ric functions. Interest for these filters is still relevant with reference

in particular to efficient implementations [3], [4], [5], [6], [7], [8],

[9]. Applications can be found in the areas of active noise control

[10], [11], [12], [13], channel equalization [14], [15], and echo can-

cellation [16], [17], [18], [19]. Recently, a new member of the class

of finite-memory LIP nonlinear filters has been introduced in [20],

[21]. It has been called even mirror Fourier nonlinear (EMFN) filter

since its basis functions are even mirror symmetric, in analogy to the

waveforms defining the discrete cosine transform. It has been shown

in [20], [21] that the resulting family of real trigonometric functions

and their linear combinations constitute an algebra on the interval

[−1, 1] that satisfies all the requirements of the Stone-Weierstrass

theorem [22]. As a consequence, EMFN filters are universal ap-

proximators for causal, time invariant, finite-memory, continuous,

nonlinear systems, as the well-known Volterra filters. However, in

contrast to Volterra filters, the basis functions of the EMFN filters

are mutually orthogonal for white uniform input signals in the inter-

val [−1,+1].
Infinite-memory LIP nonlinear filters have also been considered

in the literature since they can represent real-world systems with

fewer coefficients than finite-memory filters. Examples include re-

cursive second-order Volterra filters (RSOV) [23], [24], [25], [26],

recursive functional link artificial neural networks (RFLANN) [27],
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[28], [29] and bilinear filters [1]. The aim of our contribution is to

present the general theory that permits the introduction of a novel

class of infinite-memory LIP nonlinear filters. Within simple condi-

tions, the recursive nonlinear system to be modeled can be approx-

imated using a linear combination of trigonometric basis functions.

These basis functions are derived from those of the EMFN filter,

using finite sets of input and past output samples. We also prove

that, according to the assumed conditions and the Stone-Weierstrass

theorem, it is possible, by using a sufficiently large number of ba-

sis functions, to arbitrarily well approximate a recursive nonlinear

system. Since the resulting nonlinear filter is a recursive version

of the EMFN filter in [20], [21], it is named recursive even mirror

Fourier nonlinear (REMFN) filter. Moreover, it is shown in the pa-

per that the REMFN filter has the relevant property of being always

stable according to the bounded-input-bounded-output (BIBO) cri-

terion, in contrast to other currently used recursive nonlinear filters

such as RSOV, bilinear and RFLANN filters.

The adaptive version of the REMFN filter is also considered. An

output-error adaptation algorithm is derived, exploiting the pseudo-

linear regression approximation introduced for linear IIR filters in

[30]. The proposed method has been applied with good results to

a variety of situations. Here, the results of the approximation of a

real-world nonlinear system are presented.

The paper is organized as follows. In Section 2, the problem

of the approximation of the input-output relationship of an unknown

nonlinear system is considered. The basis functions of the REMFN

filter are derived in Section 2.1 and its BIBO stability is proved in

Section 2.2. The adaptive REMFN filter is introduced in Section 3,

together with an output-error adaptation algorithm. A simulation

experiment on the identification of a real-world nonlinear system is

presented in Section 4. Conclusions follow in Section 5.

2. RECURSIVE EVEN MIRROR FOURIER NONLINEAR

FILTER

In this section, we consider the problem of the identification or ap-

proximation of the input-output relationship of a discrete-time, time-

invariant, infinite-memory, causal, continuous, nonlinear system. In

our case, the unknown system is assumed to be nonlinear and its

input-output relationship is expressed as

y(n) = f [x(n), x(n−1), . . . , x(n−N), y(n−1), . . . , y(n−M)],
(1)

where f is a real continuous function and x(n), y(n) are real valued

sequences. We also assume two stability conditions on the system in

(1):

Assumption 1: The system (1) is BIBO stable for |x(n)| ≤ R with

|y(n)| ≤ A for all n.

Without any limitation we can assume R = 1 and A = 1. In-

deed, in case R 6= 1 and/or A 6= 1, we scale x(n) and y(n) as
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follows,

x
′(n) =

x(n)

R
and y

′(n) =
y(n)

A
,

and then consider the problem of identifying the equivalent system

y
′(n) = f

′[x′(n), . . . , x′(n−N), y′(n− 1), . . . , y′(n−M)] =

1

A
f [Rx

′(n), . . . , Rx
′(n−N), Ay

′(n−1), . . . , Ay
′(n−M)].

Moreover, we assume that, if we apply a small perturbation to

the system in (1), the output remains close to y(n):
Assumption 2: Given the perturbed system

ỹ(n) = f [x(n), x(n−1), . . . , x(n−N), ỹ(n−1), . . . , ỹ(n−M)]

+ν(n), (2)

for any θ > 0 there exist ǫ > 0 such that when |ν(n)| < ǫ ∀n it is

|y(n)− ỹ(n)| < θ ∀n, (3)

with y(n) the output of the system in (1).

2.1. The REMFN filter as universal approximator

In what follows, we prove that if the conditions of Assumption 1 and

2 are satisfied, then the recursive nonlinear system in (1) can be ap-

proximated using a linear combination of appropriate trigonometric

basis functions. To prove this result, we consider the multivariate

continuous function

η = f(ξ0, ξ1, . . . , ξM+N ), (4)

with |ξi| < 1 for 0 ≤ i ≤ M + N , and we apply the well known

Stone-Weierstrass theorem [22]:

“Let A be an algebra of real continuous functions on

a compact set K. If A separates points on K and if A
vanishes at no point of K, then the uniform closure B
of A consists of all real continuous functions on K”.

According to the Stone-Weierstrass theorem, every algebra of real

continuous functions on the compact [−1,+1]M+N+1 which sepa-

rates points and vanishes at no point is able to arbitrarily well ap-

proximate the continuous function f in (4). A family A of real func-

tions is said to be an algebra if A is closed under addition, multipli-

cation, and scalar multiplication, i.e., if (i) f +g ∈ A, (ii) f ·g ∈ A,

and (iii) cf ∈ A, for all f ∈ A, g ∈ A and for all real constants c.

In [20], [21] it has been shown that for univariate functions

η = f [ξ], (5)

an algebra that satisfies all the requirements of the Stone-Weierstrass

theorem relies on the following even-mirror basis functions

1, sin[
1

2
πξ], cos[πξ], sin[

3

2
πξ], . . . , cos[kπξ], sin[

2k + 1

2
πξ], . . .

(6)

The cosine and sine functions are the basis functions of order P =
2k and P = 2k + 1, respectively, where k is a positive integer or

zero.

For multivariate functions, an algebra that satisfies all the re-

quirements of the Stone-Weierstrass theorem and can arbitrarily well

approximate (4) can be formed by writing the basis functions in (6)

for ξ = ξ0, ξ = ξ1, . . . , ξ = ξM+N , and by considering all the

possible products, without repetitions, between basis functions with

different variables, as shown in [20], [21]. In this case, the order

P of the basis functions is defined as the sum of the orders of the

constituent 1-dimensional basis functions. By applying this rule and

taking in our case ξ0 = x(n), ξ1 = x(n− 1), . . . , ξN = x(n−N),
ξN+1 = ŷ(n− 1), . . . , ξN+M = ŷ(n−M), where ŷ(n) is the out-

put of the modeling filter, the basis functions of order P = 0, 1, 2, 3
become those given in Table 1. A generalization to any order P is

then possible, in analogy to what has been shown in [20], [21] for

EMFN filters.

Using Assumption 2, it can now be proved that with basis func-

tions as those given in Table 1, we can arbitrarily well approxi-

mate the system in (1). In fact, for any ǫ > 0, according to the

Stone-Weierstrass theorem, there is a linear combination of basis

functions, shortly noted as f̃(ξ0, ξ1, . . . , ξM+N ), such that for any

ξ0, ξ1, . . . , ξM+N in [−1,+1] it is

|f(ξ0, ξ1, . . . , ξM+N )− f̃(ξ0, ξ1, . . . , ξM+N )| < ǫ. (7)

Let us now consider the system

ỹ(n) = f̃ [x(n), x(n−1), . . . , x(n−N), ỹ(n−1), . . . , ỹ(n−M)].
(8)

According to (7) it results

ỹ(n) = f [x(n), x(n−1), . . . , x(n−N), ỹ(n−1), . . . , ỹ(n−M)]

+ν(n) (9)

with |ν(n)| < ǫ. According to Assumption 2 and the Stone-

Weierstrass theorem, for any θ > 0 there is a sufficiently small

ǫ > 0 and a linear combination of basis functions as those in

Table 1 such that the error between the output of (1) and (8) is

|y(n) − ỹ(n)| < θ. This means that, by considering a sufficiently

large number NT of basis functions of a sufficiently high order P ,

it is possible to arbitrarily well approximate the recursive system in

(1). More specifically, it is possible to write the output ŷ(n) of the

modeling filter as

ŷ(n) =

NT∑

i=1

cifi(n), (10)

where, for sake of simplicity, the short notation

fi(n) = fi[x(n), x(n−1), . . . , x(n−N), ŷ(n−1), . . . ŷ(n−M)]
(11)

has been used. Each fi(n) is a continuous function taking the form

given in Table 1 for orders up to P = 3. The resulting nonlinear filter

has been named recursive even mirror Fourier nonlinear (REMFN)

filter because it is a recursive version of the EMFN filter in [20],

[21].

It is worth noting that the rule applied to generate the basis func-

tions is the same used to define a symmetric truncated Volterra filter

[1] or an EMFN filter [20], [21]. Therefore, the total number of coef-

ficients in an REMFN kernel of order P is equal to that of a Volterra

kernel of the same order and memory equal to N +M + 1,

NP =

(
N +M + P

P

)
. (12)

In general, the number of coefficients in an REMFN filter including

all the kernels of order 0, . . . , P , is equal to

NT =

(
N +M + 1 + P

N +M + 1

)
. (13)

As it clearly appears from the last expression, the complexity of

the filter hugely increases with the order of the filter and the number

of samples considered. Often it is possible to reduce the computa-

tional complexity deleting the cross terms between input and past

output samples, as done, for example, with RSOV filters [23], [24],

[25], [26]. According to the specific application, it is also possible
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to greatly reduce the number of total coefficients, as shown for ex-

ample in [31], where an FIR filter and a very simple REMFN filter

of order P = 3 have been used as the controller in a nonlinear noise

control environment. Another aspect that affects the computational

complexity is the calculation of the trigonometric basis functions. It

is worth noting that, as with the FLANN and generalized FLANN fil-

ters [13], in our experiments the REMFN filter revealed to be robust

with respect to the quantization of the sine and cosine functions, so

that a simple look-up table can be used for the computation of their

values.

2.2. BIBO stability of the REMFN filter

It is well known that recursive filters with fixed coefficients may be

unstable, according to the BIBO criterion. For example, the BIBO

stability of RSOV and bilinear filters with fixed coefficients requires

that the poles of their linear IIR parts be inside the unit circle of the

z plane. Moreover, sufficient conditions need to be imposed on the

amplitude of the input signal in order to guarantee the boundedness

of the output signals [25], [26], [1]. The BIBO condition is allevi-

ated for the RFLANN filter since, as shown in [29], no additional

constraints on the boundedness of the input signal are needed. Fi-

nally, in the case of the REMFN filter, no conditions at all need to be

checked, since this filter is always BIBO stable. The proof is simply

based on the fact that all its nonlinear basis functions are limited by

the unity. From (10) it results

|ŷ(n)| ≤

NT∑

i=1

|ci||fi(n)| ≤ NT

NT∑

i=1

|ci| ≤ K, (14)

where K is a finite number.

3. THE ADAPTIVE REMFN FILTER

In order to identify or approximate a nonlinear system, the REMFN

filter should be equipped with an adaptation algorithm. In general,

to adapt a recursive filter there are two fundamental methods, i.e.,

equation-error and output-error methods. Equation-error method

forms the estimates using samples of the input and desired response

signals, and thus gives biased solutions. In contrast, output-error

method provides a truly recursive estimate by using the actual out-

put samples. In this case, the mean-square error function J(n) is

defined as

J(n) = E
[
e
2(n)

]
= E

{[
y(n)− ŷ(n)

]2}
, (15)

where the symbol E indicates expectation, y(n) is the conditioning

signal, i.e., the output of the unknown system, and ŷ(n) is the output

of the adaptive filter given by (10). The error function J(n) is not

quadratic with respect to the filter coefficients, since the recursive

part of the filter depends on the coefficients themselves. Therefore,

the solution of the minimization problem is not unique, in general,

and local minima may exist. To avoid this difficulty, it is possible

to resort to the pseudolinear regression approximation proposed in

[30] for adaptive IIR filters. In practice, in the gradient computation,

the dependencies on the coefficients of the recursive part of the fil-

ter are ignored. In this case, the so-derived pseudo-LMS algorithm

satisfies no stochastic gradient cost function. However, experiments

have shown that the algorithm works well in most situations not only

for IIR filters but also for LIP nonlinear filters [1]. Therefore, it is

convenient to apply it also to the REMFN filter. The pseudo-LMS

algorithm is thus derived as

c(n+ 1) = c(n)−
1

2
µ∇ce

2(n), (16)

Table 1. Basis functions of the REMFN filter

Order 0

1.

Order 1

sin[ 1
2
πx(n)], . . . , sin[ 1

2
πx(n−N)],

sin[ 1
2
πŷ(n− 1)], . . . , sin[ 1

2
πŷ(n−M)].

Order 2

cos[πx(n)], . . . , cos[πx(n−N)],
cos[πŷ(n− 1)], . . . , cos[πŷ(n−M)],

sin[ 1
2
πx(n)] sin[ 1

2
πx(n− 1)], . . .

. . . , sin[ 1
2
πx(n)] sin[ 1

2
πŷ(n−M)],

sin[ 1
2
πx(n− 1)] sin[ 1

2
πx(n− 2)], . . .

. . . , sin[ 1
2
πx(n− 1)] sin[ 1

2
πŷ(n−M)],

...

sin[ 1
2
πx(n−N)] sin[ 1

2
πŷ(n−M)],

sin[ 1
2
πŷ(n− 1)] sin[ 1

2
πŷ(n− 2)], . . .

. . . , sin[ 1
2
πŷ(n− 1)] sin[ 1

2
πŷ(n−M)],

...

sin[ 1
2
πŷ(n−M + 1)] sin[ 1

2
πŷ(n−M)].

Order 3

sin[ 3
2
πx(n)], . . . , sin[ 3

2
πx(n−N)],

sin[ 3
2
πŷ(n− 1)], . . . , sin[ 3

2
πŷ(n−M)],

cos[πx(n)] sin[ 1
2
πx(n− 1)], . . .

. . . , cos[πx(n)] sin[ 1
2
πŷ(n−M)],

cos[πx(n− 1)] sin[ 1
2
πx(n− 2)], . . .

. . . , cos[πx(n− 1)] sin[ 1
2
πŷ(n−M)],

...

cos[πx(n−N)] sin[ 1
2
πŷ(n−M)],

cos[πŷ(n− 1)] sin[ 1
2
πŷ(n− 2)], . . .

. . . , cos[πŷ(n− 1)] sin[ 1
2
πŷ(n−M)],

...

cos[πŷ(n−M + 1)] sin[ 1
2
πŷ(n−M)],

sin[ 1
2
πx(n)] cos[πx(n− 1)], . . .

. . . sin[ 1
2
πx(n)] cos[πŷ(n−M)],

sin[ 1
2
πx(n− 1)] cos[πx(n− 2)], . . .

. . . sin[ 1
2
πx(n− 1)] cos[πŷ(n−M)],

...

sin[ 1
2
πx(n−N)] cos[ŷ(n−M)],

sin[ 1
2
ŷ(n− 1)] cos[πŷ(n− 2)], . . .

. . . , sin[ 1
2
ŷ(n− 1)] cos[ŷ(n−M)],
...

sin[ 1
2
πŷ(n−M + 1)] cos[πŷ(n−M)],

sin[ 1
2
πx(n)] sin[ 1

2
πx(n− 1)] sin[ 1

2
πx(n− 2)], . . . ,

sin[ 1
2
πŷ(n−M + 2)] sin[ 1

2
πŷ(n−M + 1)]

sin[ 1
2
πŷ(n−M)].

where

c(n) = [c1(n)c2(n) · · · cNT
(n)]T , (17)
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e(n) = y(n) − ŷ(n) and µ is the step size. By applying the pseu-

dolinear regression approximation to the update of the filter coeffi-

cients, it results

c(n+ 1) = c(n) + µe(n)f(n), (18)

where, using the notation in (11), the vector f(n) is given by

f(n) = [f1(n)f2(n) · · · fNT
(n)]T . (19)

In our case, it is formed, for orders up to P = 3, with the basis

functions of the REMFN filter of (10) given in Table 1.

4. AN EXPERIMENTAL RESULT

We consider here the identification of a saturated amplifier, a

Behringer Tube Ultragain MIC100. In the experiment settings,

at the maximum used volume, the amplifier introduces on a 1 kHz

sinusoidal input a second order harmonic distortion of 11% and a

third order harmonic distortion of 22%. The harmonic distortion

is defined as the ratio, in percent, between the magnitude of each

harmonic and that of the fundamental frequency. For its identi-

fication, we applied to the amplifier a white uniform input signal

between [−1,+1], sampled at 8kHz, and recorded the correspond-

ing output. An LMS update as in (18) has been used to identify the

amplifier from the input and output signals. We compared the mod-

eling performance of a Volterra, an EMFN, and an REMFN filter

with the same number of coefficients. Within these conditions, all

filters provide similar steady-state MSE performance. However, the

EMFN and REMFN filters have a much faster convergence speed

(the results are not included due to space limitations). The situation

changes if the output of the amplifier is processed with an IIR filter

(e.g., used to select a certain frequency range of interest) and if we

simultaneously model the cascade of the amplifier and the IIR filter.

In this case, we processed the output of the amplifier with a 4-th or-

der Butterworth passband filter with normalized cut-off frequencies

[0.25, 0.75]. Figure 1 shows the learning curves of the MSE for an

LMS update averaged over 100 different input-output segments for

different values of the step-size. Modeling the system with a set of

step-sizes allows us to identify the minimum achievable MSE with

the filter under test and the maximum value of the step-size (and

thus convergence speed) able to obtain that MSE with a negligible

error. The step sizes are chosen in the following set

{
0.01a2, 0.01a, 0.01, 0.01a−1, 0.01a−2

}
,

where a = 10
1/4. Figure 1.(a) refers to an REMFN filter having 137

coefficients formed by an EMFN forward filter of order 3, memory

of 7 samples, and an EMFN feedback filter of order 3, memory of 7
samples, without cross-terms. Figure 1.(b) refers to an EMFN filter

of order 3, memory 8 having 164 coefficients. Figure 1.(c) refers to

a Volterra filter of order 3, memory 8 having 164 coefficients. The

superiority of the REMFN filter in these experimental conditions is

clearly evident. With an EMFN filter of memory 16 we can obtain

a steady-state MSE close to that of the REMFN filter of memory 7,

but 968 coefficients are required.

5. CONCLUSIONS

In this paper a novel class of recursive BIBO stable LIP nonlinear

filters, called REMFN filters, has been presented. This class of

filters includes, as a particular case, the finite-memory EMFN fil-

ters, recently introduced to efficiently deal with large nonlinearities.
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Fig. 1. Learning curves with (a) REMFN, (b) EMFN, and (c)

Volterra filter.

It is proved in this paper that, according to the Stone-Weierstrass

approximation theorem, the REMFN filter is able to arbitrarily

well approximate any discrete-time, time-invariant, causal, infinite-

memory, continuous, nonlinear system. The complexity of the

REMFN filter is, in general, the main drawback since it hugely

increases with the number of basis functions used and their order

P . However, experiments showed that quite often kernels of re-

duced order (up to P = 3) are sufficient to model nonlinear system,

especially within specific application-oriented conditions. More

in general, future research will include strategies and tools for the

choice of the most relevant terms of an REMFN filter according to

the nonlinear system to be modeled.

7987



6. REFERENCES

[1] V. J. Mathews and G. L. Sicuranza, Polynomial Signal Process-

ing. New York: Wiley, 2000.

[2] Y. H. Pao, Adaptive Pattern Recognition and Neural Networks.

Reading, Mass.: Addison-Wesley, 1989.

[3] E. P. Reddy, D. P. Das and K. M. M. Prabu, “Fast adaptive algo-

rithms for active control of nonlinear processes,” IEEE Trans.

Signal Processing, vol. 56, no.9, pp. 4530-4536, Sep. 2008.

[4] M. Zeller and W. Kellermann, “Fast and robust adaptation of

DFT-domain Volterra filters in diagonal coordinates using it-

erated coefficient updates,” IEEE Trans. on Signal Processing,

vol. 58, no. 3, pp. 1589-1604, Mar. 2010.

[5] E. L. O. Batista and R. Seara, “A sparse-interpolated scheme

for implementing adaptive Volterra filters,” IEEE Trans. on

Signal Processing, vol. 58, no. 4, pp. 2022-2035, Apr. 2010.

[6] M. Zeller, L. A. Azpicueta-Ruiz, J. Arenas-Garcia and

W. Kellermann, “Adaptive Volterra filters with evolutionary

quadratic kernels using a combination scheme for memory

control,” IEEE Trans. Signal Processing, vol. 59, no. 4, pp.

1449-1464, Apr. 2011.

[7] V. Kekatos and G. Giannakis, “Sparse Volterra and polyno-

mial regression models: Recoverability and estimation, ” IEEE

Trans. Signal Processing, vol. 59, no. 12, pp. 5907-5920, Dec.

2011.

[8] J. H. M. Goulart and P. M. S. Burt, “Efficient kernel computa-

tion for Volterra filter structure evaluation,” IEEE Signal Pro-

cessing Letters, vol. 19, no. 3, pp. 135138, Mar. 2012.

[9] E. L. O. Batista and R. Seara, “On the performance of adaptive

pruned Volterra filters ”, Signal Processing, vol. 93, no. 7, pp.

1909-1920, July 2013.

[10] L. Tan and J. Jiang, “Adaptive Volterra filters for active noise

control of nonlinear processes,” IEEE Trans. Signal Process-

ing, vol. 49, pp. 1667-1676, Aug. 2001.

[11] D. P. Das and G. Panda, “Active mitigation of nonlinear

noise processes using a novel filtered-s LMS algorithm,” IEEE

Trans. Speech Audio Processing, vol. 12, no. 3, pp. 313-322,

May 2004.

[12] D. Zhou and V. DeBrunner, “Efficient adaptive nonlinear filters

for nonlinear active noise control,” IEEE Trans. Circuits Syst.

I, vol. 54, pp. 669-681, Mar. 2007.

[13] G. L. Sicuranza and A. Carini, “A generalized FLANN filter

for nonlinear active noise control,” IEEE Trans. Speech, Audio,

and Language Processing, vol. 19 , pp. 2412-2417 , Nov. 2011.

[14] J. Malone and M. A. Wickert, “Practical Volterra equalizers for

wideband satellite communication with TWTA nonlinearities”,

in Proc. of IEEE DSP/SPE Workshop, Sedona, AZ, pp. 48-53,

4-7 Jan. 2011.

[15] B. F. Beidas, “Intermodulation distortion in multicarrier satel-

lite systems: Analysis and turbo Volterra equalization,” IEEE

Transactions on Communications, vol. 59, no. 6, pp. 1580-

1590, June 2011.

[16] L. A. Azpicueta-Ruiz, M. Zeller, A. R. Figueiras-Vidal, J.

Arenas-Garca, and W. Kellermann, “Adaptive combination of

Volterra kernels and its application to nonlinear acoustic echo

cancellation,” IEEE Transactions on Audio, Speech and Lan-

guage Processing, vol. 19, no. 1, pp. 97-110, Jan. 2011.

[17] D. Comminiello, L. A. Azpicueta-Ruiz, M. Scarpiniti, A.

Uncini, and J. Arenas-Garcia, “Functional link based archi-

tectures for nonlinear acoustic echo cancellation,” in Proc.

of Hands-free Speech Commun. and Microphone Arrays

(HSCMA2011), Edinburgh, UK, pp. 180-184, May 30-June 1,

2011.

[18] T. G. Burton and R. A. Goubran, “A generalized proportional

subband adaptive second order Volterra filter for acoustic echo

cancellation in changing environments”, IEEE Trans. Audio,

Speech and Language Processing, vol. 19, no. 8, pp. 2364-

2373, Nov. 2011.

[19] L. A Azpicueta-Ruiz, M. Zeller, A. R. Figueiras-Vidal, W.

Kellermann and J. Arenas-Garcia, “Enhanced adaptive Volterra

filtering by automatic attenuation of memory regions and its

application to acoustic echo cancellation”. IEEE Trans. Signal

Processing, vol. 61, no. 2, pp. 2745-2750, Nov. 2013.

[20] A. Carini and G. L. Sicuranza, “Even mirror Fourier nonlin-

ear filters”, in Proc. Int. Conf. Acoust., Speech, Signal Pro-

cess. (ICASSP), Vancouver, Canada, pp. 5608-5612, May 26-

31, 2013.

[21] A. Carini and G. L. Sicuranza, “Fourier nonlinear filters”, Sig-

nal Processing, vol. 94, no. 1, pp. 183-194, Jan. 2014.

[22] W. Rudin, Principles of Mathematical Analysis. New York:

McGraw-Hill, 1976.

[23] E. Roy, R. W. Stewart, and T. S. Durrani, “Theory and

applications of adaptive second order IIR Volterra filters,”

Proc. Int. Conf. Acoust., Speech, Signal Process. (ICASSP), At-

lanta, GA, vol. III, pp. 1597-1601, May 1996.

[24] E. Roy, R. W. Stewart, and T. S. Durrani, “High-order system

identification with an adaptive recursive second-order polyno-

mial filter”, IEEE Signal Process. Lett., vol. 3, no. 10, pp. 276-

279, Oct. 1996.

[25] E. Mumolo and A. Carini, “A stability condition for adaptive

recursive second-order polynomial filters,” Signal Process.,

vol. 54, no. 1, pp. 85-90, Oct. 1996.

[26] E. Mumolo and A. Carini, “On the stability of discrete time

recursive Volterra filters,” IEEE Signal Process. Lett., vol. 6,

pp. 230-232, Sept. 1999.

[27] H. Zhao, X. Zeng and J. Zhang, “Adaptive reduced feedback

FLNN nonlinear filter for active control of nonlinear noise pro-

cesses”, Signal Process., vol. 90, pp. 834-847, Mar. 2010.

[28] G. L. Sicuranza and A. Carini, “Adaptive recursive FLANN fil-

ters for nonlinear active noise control,” Proc. Int. Conf. Acoust.,

Speech, Signal Process. (ICASSP), Prague, Czech Republic,

pp. 4312-4315, May 22-27, 2011.

[29] G. L. Sicuranza and A. Carini, “On the BIBO stability con-

dition of adaptive recursive FLANN filter with application to

nonlinear active noise control,” IEEE Trans. Speech, Audio,

and Language Processing, vol. 20, pp. 234-245, No. 1, Jan.

2012.

[30] P. L. Feintuch, “An adaptive recursive LMS filter,” Proc. IEEE,

vol. 64, no. 11, pp. 1622-1624, Nov. 1976.

[31] G. L. Sicuranza and A. Carini, “A new recursive controller for

nonlinear active noise control”, 8th Int. Symp. on Image and

Signal Processing and Analysis (ISPA 2013), Trieste, Italy, pp.

626-631, Sept. 4-6, Sep. 2013.

7988


