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ABSTRACT 

 

The paper presents a solution for singing voice processing 

that is used in a karaoke application with automated voice 

correction
1
. The intended purpose of the application is to 

automatically improve user’s performance towards 

performance of a professional singer by implementation of 

voice effects such as pitch correction, artificial polyphony, 

time stretching and other. The proposed framework 

incorporates a complete processing workflow including 

analysis, morphing and synthesis. The framework uses an 

original model of voiced speech which represents each 

harmonic as a multicomponent function and provides high 

quality processing in conditions of partial glottalization. 

 

Index Terms— speech analysis, speech synthesis, 

singing voice processing 

 

1. INTRODUCTION 

 

Singing voice modification has been subject of great 

research and consumer interest in the last decade. The main 

field of its application is voice processing systems of 

various kinds. The goal of such systems is to give a 

nonprofessional musician an opportunity for creating 

professional singing voices. The well-known singing 

synthesis system Vocaloid [1] can create singing voices just 

from typed lyrics and melody score. Functionality of the 

system has been recently extended by VocaListener [2] – a 

plug-in for personalized synthesis which can extract some 

characteristics of user’s original voice and apply them to 

synthesized singing. There are some other systems that 

utilize melody and lyrics read by the user [3]. The synthesis 

application that we address in this paper is different in a 

way. It takes as inputs the melody of the song and original 

singing of the user. The user tries to sing as good as they can 

and the system corrects singing according to the given 

melody. The goal is to preserve original voice and subtle 

nuances of user’s performance as accurately as possible. 

The proposed solution is based on the speech modeling 

system GUSLY [4]. The model is experimentally applied to 

                                                 
1
 The presented framework is used in an automated karaoke 

application by IT ForYou company 

singing voice and its performance is experimentally 

evaluated in the paper. 

 

1.1. Relation to prior work 

 

The present study focuses on further development of 

GUSLY in order to make it suitable for singing voice 

correction. Currently the most popular and respected system 

for voice processing is TANDEM-STRAIGHT [5] that has 

been successfully applied to singing [6]. Both systems are 

similar on conceptual level (i.e. modeling consists in 

extracting and manipulating pitch, temporary spectral 

envelopes and excitation) though use different methods for 

implementing all their components: analysis, morphing and 

synthesis. Due to its paradigm of warped-time processing 

and multicomponent harmonic excitation GUSLY has an 

ability to capture and render fine subharmonic components 

that is potentially beneficial for modeling various phonation 

phenomena such as glottalization, creaky voice, diplophonic 

phonation etc. This ability might be valuable for singing 

voice processing since these effects are typical in singing. 

The introduced extensions of GUSLY can be summarized as 

follows: 1) the estimator of instantaneous pitch [7] is now 

capable of processing extreme low and high voices;  

2) a robust voiced/unvoiced detection scheme is proposed 

that utilize an artificial neural network (ANN); ANNs have 

been already applied for speech detection [8,9] and 

specifically for voiced/unvoiced speech classification 

[10,11]; our solution is different as far as applied for singing 

voice and has an advantage of time-warping which to the 

knowledge of the authors has not been explored in this 

context; 3) estimation of harmonic parameters is adapted to 

partial glottalization. 

 

2. GUSLY OUTLINE 

 

2.1. Voiced and mixed speech modeling 

 

In GUSLY voiced and mixed excitations are considered as a 

quasi-periodic process with constant pitch. The pitch period 

determines how many harmonics are distinguished by the 

model. The model considers each of them as a 

multicomponent function and represents signal 𝑠(𝑛) as 
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where 𝐺𝑘(𝑛) is a gain factor specified by the spectral 

envelope, C – number of sinusoidal components for each 

harmonic, 𝑓𝑘
𝑐  and 𝜑𝑘

𝑐 (0) – frequency and initial phase of  

c-th component of k-th harmonic respectively, 𝑒𝑘(𝑛) - 

excitation signal of k-th harmonic. Amplitudes 𝐴𝑘
𝑐 (𝑛) are 

normalized in order to set the unit energy to each 

harmonic’s excitation: 
1

2
  𝐴𝑐

𝑘(𝑛) 2𝐶
𝑐=1 = 1 for 𝑘 = 1,… ,𝐾. 

According to (1) the actual period of excitation can be 

longer than the period of pitch. That makes the model 

suitable for processing speech fragments with partial 

glottalization. 

 

Figure 1 - Glottalization pattern 

We use term 'glottalization' in the same sense as it is defined 

in [12] i.e. as a speech production phenomenon which is 

characterized by cycles of normal quasi-periodic phonations 

demarcated by a significantly lower vibration period of 

lower amplitude as shown in figure 1. In frequency domain 

glottalization is characterized by emergence of a regular 

subharmonic structure. 

 

2.2. Analysis procedure 

 

In GUSLY parameters of the model are estimated in 

warped-time domain that requires prior estimation of 

instantaneous pitch. Time-warping implies resampling of 

the signal using a constant number of samples per pitch 

period. 

 

Figure 2 - Analysis scheme 

Analysis workflow is shown in figure 2 and can be 

briefly summarized in the following way: 1) estimation of 

instantaneous pitch is made; 2) time warping is applied that 

results in a speech signal with constant pitch [13]; 3) the 

signal is separated into individual harmonics using a DFT 

analysis filter bank; 4) subband analytical signals are 

decomposed into instantaneous harmonic parameters using 

modified Prony's method. 

 

2.3. Synthesis procedure 

 

The output signal is synthesized using the same functional 

blocks applied in reverse order as shown in figure 3: 1) 

subband signals are synthesized using (1); the sample rate of 

the signals varies with target (modified) instantaneous pitch; 

2) DFT synthesis filter bank is applied which performs 

antialiasing filtering of each harmonic component (the 

subband signals are decimated in order to reduce overall 

computational cost); 3) inverse time warping is applied to 

form target pitch contour. 

 

Figure 3 - Synthesis scheme 

 

3. GUSLAR: EXTENDING GUSLY FOR  

SINGING VOICE PROCESSING  

 

3.1. Pitch estimator extension 

 

A characteristic feature of singing voice in contrast to 

speech is a much wider range of possible pitch values. So it 

is required to extend working range of the instantaneous 

robust algorithm for pitch tracking IRAPT [7] that is used in 

GUSLY. On the other hand the system is very sensitive to 

pitch errors so it is important to preserve accuracy and 

robustness of the original estimator. The key idea of IRAPT 

is to use instantaneous parameters of sinusoidal modeling 

for calculation of so-called instantaneous normalized cross-

correlation function (INCCF) that is used as a period 

candidate generation function. To estimate parameters of the 

model speech is split into analytical subband signals. The 

bandwidth of the subbands should separate individual 

harmonics and at the same time be wide enough to process 

rapid frequency variations. Thus for a bass voice very 

narrow channels (about 25-30 Hz) should be used, however, 

temporal resolution for soprano in this case would be very 

poor.  

To solve the problem we introduce segmented 

calculation of INCCF. The idea is to upsample and 

downsample the signal (by factors 4 and 2 respectively) and 

apply the same DFT filter bank as in IRAPT (figure 4). This 

produces three different sets of instantaneous parameters 

each of them corresponding to a specific segments of 
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allowed lag range. For upsampled version instantaneous 

amplitudes are filtered by a low-pass filter in order to 

attenuate multicomponent subband signals. Segmented 

INCCFs are calculated from corresponding parameter sets 

and then combined into resulting period candidate 

generation function. 

 

Figure 4 - INCCF calculation 

Remaining steps of pitch estimation process are 

performed as in IRAPT-1 [7]. 

 

3.2. Voiced/unvoiced classification 

 

Inaccurate voiced/unvoiced classification leads to annoying 

artifacts, especially when pitch modifications are significant. 

As far as the proposed analysis scheme extracts 

instantaneous harmonic parameters it seems reasonable to 

use them for voiced/unvoiced detection. A harmonicity 

measure based on instantaneous frequency was given in [14] 

that can be used as a possible solution. In investigations 

[15,16] was shown that detector's capabilities can be further 

improved by time-warping. However the problem that 

emerges when combining these ideas is that 

voiced/unvoiced detector should be robust to typical pitch 

estimation errors like halving or doubling. To reduce impact 

of the pitch errors it is necessary to combine measurements 

of adjacent frames. We found that in the current conditions a 

good alternative is to use an ANN. Advantage of ANN is 

that the performance of the estimator can be improved by 

adding inaccurately classified cases in the training dataset. 

The structure of the proposed detector is shown in figure 5. 

 

Figure 5 - Vocied/unvoiced decision scheme 

Time-warped signal is divided into overlapping frames and 

log spectrums are calculated using the Discrete Fourier 

Transform (DFT). Spectrums of five adjacent frames are 

concatenated into feature vectors which are given to ANN's 

input. Time warping removes pitch variations and due to 

external estimation of instantaneous pitch each harmonic is 

placed on a predefined set of bins. This significantly 

narrows parameter space and provides better generalization 

of the ANN as will be shown in the experimental section. 
 

3.3. Excitation parameters estimation 

 

Applying parametric morphing to singing voices in practice, 

we found that non professional performers often introduce 

partial or even pronounced glottalization. It is true 

especially for male singers. 

Assuming that pitch is constant it is possible to perform 

individual separation of subharmonic components by 

applying a filter bank with double or triple number of 

channels and correspondent lengthening of the filter 

prototype (we use 8 pitch periods in original GUSLY and 16 

in its current modification). In GUSLY excitation 

parameters are extracted using modified instantaneous 

Prony's method. Each subband signal of the analysis filter 

bank is represented as a sum of sinusoids with close 

frequencies using derivatives of the signal. The method 

performs quite well but its computational cost is rather high. 

We found that when the number of channels is increased 

further decomposition of subband signals by Prony's method 

does not introduce noticeable quality improvements and 

therefore can be skipped. 

 

3.4. Excitation synthesis 

 

During synthesis of excitation signals it is important to 

preserve phase synchronization between harmonics in order 

to reduce phasiness (reverberation) artifacts [17]. 

Investigation of this effect and some notable solutions were 

presented in [18,19]. According to (1) in the current 

modeling framework we can directly synchronize periodical 

components of excitation signals using relative phase 

parameter ∆𝜑𝑘
𝑐 𝑛  

𝑒𝑘 𝑛 =  𝐴𝑘
𝑐  𝑛 cos 𝑓𝑘

𝑐𝑛 + ∆𝜑𝑘
𝑐  𝑛  

𝐶

𝑐=1

 (2) 

which is calculated as ∆𝜑𝑘
𝑐  𝑛 = 𝜑𝑘

𝑐  𝑛 −
𝜑0(𝑛)𝑓𝑘

𝑐

𝑓0
. The 

relative phase parameter ∆𝜑𝑘
𝑐  𝑛  is unwrapped along 

sample indices n. Using (2) for excitation synthesis 

preserves shape of the waveform and results in natural 

synchronization of voice pulses to correct relative positions. 

When pitch is changed frequencies of excitation 

components are changed as well by direct and inverse time-

warping. Their amplitudes 𝐴𝑘
𝑐  𝑛  and relative phases 

∆𝜑𝑘
𝑐  𝑛  are interpolated in polar coordinates according to 

source and target instantaneous pitch values. 

Output waveform of the signal can be synthesized from 

modified model parameters either using original GUSLY's 

scheme (see figure 3) or the overlap-add method (OLA), 

both producing close subjective quality. Considering that 

our target application operates in non real-time mode we 

used OLA for the reason of implementation simplicity, 
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though GUSLY's scheme benefits from antialiasing filtering 

(introduced by DFT synthesis filter bank) and much lower 

computational cost. 

 

4. EXPERIMENTAL EVALUATION 

 

4.1. Pitch tracking algorithm 

 

In order to evaluate performance of the proposed pitch 

detection algorithm the PTDB-TUG speech database [20] is 

used. To emulate signing voices we artificially scale pitch 

by upsampling and sampling rate adjustments. The proposed 

algorithm (denoted as 'IRAPT3') is compared to RAPT [21], 

YIN [22], SWIPE’ [23] in terms of gross pitch error (GPE) 

and mean fine pitch error (MFPE) [7] – table 1. 

 
 Male speech Female speech 

 GPE MFPE GPE MFPE 

RAPT 2.24 1.72 6.99 1.19 

YIN 1.78 1.26 5.95 0.83 

SWIPE’ 0.94 1.32 6.77 1.11 

IRAPT3 1.76 1.19 6.77 0.91 

Table 1 - Pitch detection performance evaluation 

The experiment shows that the proposed technique has a 

close performance to other robust pitch detection 

algorithms. 

 

4.2. Voiced/unvoiced detector 

 

In this subsection we experimentally compare performance 

of the ANN-based voiced/unvoiced detector when operating 

in source and warped time domains. 

A small database of speech and singing voice samples 

was manually classified. Then the database was converted to 

feature vectors in two modes: without time-warping and 

with time-warping. Conversion conditions are listed in 

table 2. For both cases each feature vector was obtained as 

concatenation of five successive short-time log spectrums. 

 
Sampling rate, 

kHz 

Window 

length, 

samples / ms 

Offset, 

samples / ms 

Available 

number of 

harmonics 

Feature 

vector 

dimension 

log spectrum without time-warping 

16 640 / 40 80 / 5 6->200 1600 

log spectrum after time-warping 

0.63-27.3 128 / 4.7-208 80 / 3-127 10 320 

Table 2 - Conditions of feature vector extraction for 

voiced/unvoiced classification 

A neural network with logistic units and one hidden layer 

(100 hidden units) is used. In order to compare how good 

the net generalizes we use training sets of different durations 

as shown in figure 6. Despite the fact that after time-

warping the number of features is five times smaller, the 

ANN generalizes much faster providing smaller error rate 

on the test set (3.5% versus 5.2% for two-minute  

training set). 

 

 

Figure 6 - Voiced/unvoiced classification errors on the test data set 

 

4.3. Subjective modeling evaluation 

 

Performance of the whole framework is evaluated using 

subjective mean opinion score (MOS) measures. We use 

recordings of three different Russian songs each performed 

by three nonprofessional singers. The melodies of the songs 

are written using a MIDI (Musical Instruments Digital 

Interface) sequencer or extracted from professional singing. 

For MIDI-based melodies we add smoothing and vibrato as 

described in [24] to make target pitch contours more natural. 

The voices were processed by the modeling framework 

resulting in pitches correction and adding artificial 

polyphony. Polyphonic effect is achieved by mixing several 

outputs with different target pitch contours. Some samples 

are available for download at 

http://dsp.tut.su/guslar_demo.zip. 

Four volunteers who have a good ear for music were 

asked to rate naturalness and harmony of the source and 

corrected singings in 1-to-5 scale (5: excellent, 4: good, 3: 

fair, 2: poor, 1: bad). Then fragments with glottalization 

were separated from the processed voices and the volunteers 

were asked to rate each of them individually. Average 

results of the listening tests are presented in table 3. 

 
Overall singing Glottalization fragments 

Naturalness Harmony Naturalness Harmony 

Source singing 

5 2.9 - - 

Corrected singing 

4.5 5 4.2 4.5 

Table 3 - Subjective quality evaluation (mean opinion scores)  

The results show that the model can effectively correct 

singing voices with glottalization, providing high subjective 

quality. 

 

5. CONCLUSIONS 

 

A framework for singing voice correction has been 

proposed. The framework is based on speech processing 

system GUSLY that has been extended for creating high 

quality singing effects. The framework's performance has 

been evaluated using subjective measures. 
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