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ABSTRACT

Many voice conversion systems require parallel training sets

of the source and target speakers. Non-parallel training is

more complicated as it involves evaluation of source-target

correspondence along with the conversion function itself.

INCA is a recently proposed method for non-parallel train-

ing, based on iterative estimation of alignment and conversion

function. The alignment is evaluated using a simple nearest-

neighbor search, which often leads to phonetic miss-matched

source-target pairs. We propose here a generalized approach,

denoted as Temporal-Context INCA (TC-INCA), based on

matching temporal context vectors. We formulate the training

stage as a minimization problem of a joint cost, considering

both context-based alignment and conversion function. We

show that TC-INCA reduces the joint cost and prove its

convergence. Experimental results indicate that TC-INCA

significantly improves the alignment accuracy, compared to

INCA. Moreover, subjective evaluations show that TC-INCA

leads to improved quality of the synthesized output signals,

when small training sets are used.

Index Terms— Non-Parallel Voice Conversion, INCA,

Gaussian Mixture Model (GMM), Spectral Distance

1. INTRODUCTION

The goal of voice conversion systems is to modify spoken

sentences of a source speaker to sound as if a target speaker

had said them. Such transformation can be used for person-

alizing synthesized output signals of Text-To-Speech (TTS)

systems used in cases of vocal pathology, or in automatic di-

alogue systems, and also for entertainment purposes such as

online roll playing.

Classical spectral conversion is based on statistical mod-

eling of the spectral feature vectors as a Gaussian Mixture, so

the resulting trained conversion is a mixture of linear conver-

sions [1,2]. Several other GMM-based approaches have been

suggested since [3–7]. The classical GMM-based method and

its variants are trained using parallel sets where the source

and target speakers say the same text. Their training process

is based on a one-to-one correspondence between the source

and target spectral feature vectors.

In a non-parallel setup, no assumptions are made regard-

ing the content of the training sentences. The source-target

correspondence is not straightforward as in the parallel case,

thus presenting a greater challenge. Some non-parallel meth-

ods bypass this problem by modeling the two speakers sep-

arately and perform alignment or adaptation of the model

parameters [8, 9]. Some train a conversion using an addi-

tional parallel set and adapt its parameters to the desired

target speaker [10, 11].

A different approach for non-parallel training called It-

erative combination of a Nearest Neighbor search step and

a Conversion step Alignment method (INCA), was recently

proposed [12]. This approach provides a framework for ap-

plying parallel training techniques using non-parallel training

sets. It is based on an iterative evaluation of an auxiliary con-

version function and matching functions between the source

and target vectors. Convergence of this process was demon-

strated using empirical evaluations, but, as indicated by the

authors of INCA, the alignment process is prone to phonetic

mismatch. To smooth these errors they train their auxiliary

conversion function using the classical GMM-based method,

which is known to have over-smoothing characteristics. Still,

the importance of correct time alignment was recently demon-

strated as having a large influence on the quality of the syn-

thesized converted speech [13].

In this paper we formulate the non-parallel training pro-

cess as a minimization problem of a joint cost, considering

temporal-context alignment and conversion function. We

propose a generalization of INCA, denoted here Temporal-

Context INCA (TC-INCA), based on matching sequences of

vectors (rather than single vectors), according to their original

temporal context. We show that TC-INCA (and hence also

INCA) are, in fact, alternating minimization steps of the joint

cost, and prove they converge.

Fig. 1 illustrates the main difference between TC-INCA,

which is based on matching temporal context vectors, and

INCA’s, which is based on matching single vectors.
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Fig. 1. The proposed alignment process of matching se-

quences of vectors, used in TC-INCA - thick arrow, as op-

posed to matching feature vectors used in INCA - thin arrows.

We present objective and subjective evaluations compar-

ing the proposed TC-INCA to INCA. Our method signifi-

cantly increases the amount of correctly matched pairs and

leads to improved synthesized quality and similarity to the

target.

2. INCA

We begin by briefly describing the (symmetric variant of)

INCA [12]. Let X = {xk}
Nx

k=1 , Y = {yj}
Ny

j=1 ∈ R
d be

two (non-parallel) training sets of feature vectors related to

source and target speakers. The training process is based on

an iterative evaluation of a parallel auxiliary conversion func-

tion, F (·), its inverse, and two matching functions between

the source and target vectors:

{

p (k) = j if xk matches yj

q (j) = k if yj matches xk.
(1)

where k = 1, ..., Nx and j = 1, ..., Ny.

The iterative process begins by initializing at t = 0 an

auxiliary conversion function to be the identity function:

F0 (x) = x. In each iteration, the two matching functions,

pt (·) and qt (·), are evaluated using a nearest neighbor search

between converted source vectors and the target vectors, and

vice versa, based on the previous auxiliary function Ft−1:

pt (k) = argmin
j

‖Ft−1 (xk)− yj‖
2

qt (j) = argmin
k

∥

∥xk −F−1
t−1 (yj)

∥

∥

2
, (2)

These matching functions define a parallelized training set,
{(

xk,yp(k)

)

,
(

xq(j),yj

)}

, which reduces the training pro-

cess of the auxiliary function, Ft, to the parallel case. The

simple nearest neighbor search defined in eqn. (2) often

leads to alignment errors, where vectors related to different

phonemes are matched. To reduce the influence of miss-

aligned vectors, the classical GMM-based conversion, known

for its smoothing characteristics, is used to train the auxiliary

function.

Convergence is measured via the mean squared-error

(MSE) between the converted sets and the original sets:

Dt =
1

Nx +Ny

(

Nx
∑

k=1

∥

∥Ft (xk)− ypt(k)

∥

∥

2

+

Ny
∑

j=1

∥

∥xqt(j) −F−1
t (yj)

∥

∥

2

)

. (3)

Erro et al. [12] show that this measure converges empirically.

Once convergence is achieved, the last conversion function

is used for conversion. Alternatively, any other parallel con-

version function may be trained, based on the parallelized set

using the final matching functions.

3. TC-INCA

3.1. Joint Cost

In this section we formulate the conversion stage of a non-

parallel conversion as a minimization problem of a joint cost,

considering both conversion and context-based matching

functions. We define a set of context vectors {Xk}
Ñx

k=1 ∈

R
d(T+1), {Yk}

Ñy

k=1 ∈ R
d(T+1) obtained by concatenating

T/2 (T is even) successive vectors before and after each

training vector:

Xk ,

(

x⊤
k−T/2, ...,x

⊤
k , ...x

⊤
k+T/2

)⊤

Yj ,

(

y⊤
j−T/2, ...,y

⊤
j , ...y

⊤
j+T/2

)⊤

, (4)

where Ñx(≤ Nx), Ñy(≤ Ny) are the number of the source

and target context vectors, respectively. We assume that the

non-parallel source and target sets are extracted from several

continuous utterances (words, sentences). To simplify the no-

tation we also assume that the indices k and j reflect their

temporal ordering, meaning that xk and xk+1, for example,

are extracted from consecutive time frames.

Given a spectral conversion function, its inverse, F−1 (·),
and two matching functions p (·) and q (·) - pairing each

source context vector to a target context vector and vice

versa, we write a joint cost function, similar to eqn. (3):

L =

Ñx
∑

k=1

∥

∥F (Xk)−Yp(k)

∥

∥

2
+

Ñy
∑

j=1

∥

∥Xq(j) −F−1 (Yj)
∥

∥

2
,

(5)

where the converted context vectors F (Xk) are obtained by

applying the conversion function on each feature vector:

F (Xk) ,
(

F
(

xk−T/2

)⊤
, ...,F (xk)

⊤
, ...F

(

xk+T/2

)⊤
)⊤

,

(6)

and similarly for F−1 (Yj).
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The cost presented in eqn. (5) is the empirical squared-

error between the source and target sequences and their esti-

mated versions (using the conversion function), according to

the two alignment functions, p and q. Therefore, we regard

the training stage as an optimization problem, aiming to min-

imize this cost:

{F∗, p∗, q∗} = argmin
{F ,p,q}

L (p, q,F) . (7)

In the parallel case, alignment is obtained by using DTW

and phonetic labeling (if available). Assuming, w.l.o.g., that

the source and target training vectors are ordered so that xk

matches yk, ∀k = 1, ..., N , the matching functions become

identity functions: p (k) = q (k) = k. Substituting eqn. (6)

in eqn. (5) and neglecting the ends, our cost becomes:

Lpara = T

(

N
∑

k=1

‖F (xk)− yk‖
2+

N
∑

j=1

∥

∥xj −F−1 (yj)
∥

∥

2

)

,

(8)

which is a symmetric generalization of the empirical loss min-

imized in the training process of the classical GMM-based

conversion [1], up to a constant T .

3.2. Iterative Minimization

In this section we present an iterative approach, for reduc-

ing the joint cost defined in eqn. (7), similar to the itera-

tive process of INCA [12]. Applying standard minimization

techniques such as gradient descent is rather problematic con-

sidering the non trivial dependency of the joint cost with re-

spect to the matching functions. Alternating minimization is

a well known iterative technique for minimizing cost func-

tions depending on more than one variables [14]. Applying

this method for minimizing the joint cost, reduces eqn. (7) to

two minimization problems solved iteratively for t = 1, 2, ...:

{pt, qt} = argmin
{p,q}

L (p, q,Ft−1) (9)

Ft = argmin
F

L (pt, qt,F) , (10)

Lemma 3.1. The series {Lt} converges to a (local) minimum.

Proof. According to eqns. (9) and (10), the solutions {Ft, pt, qt}
sustain:

Lt , L (pt, qt,Ft) ≤ L (pt, qt,Ft−1)

≤ L (pt−1, qt−1,Ft−1) , Lt−1. (11)

The series {Lt} is non-increasing and obviously bounded by

zero, therefore converges to a (local) minimum.

Convergence to a global minimum, or even existence of

a single minimum is not guarantied since the original mini-

mization problem stated in eqn. (5) is not convex.

Given a conversion function, the joint cost is separable in

p and q, leading to a two-step solution of eqn. (9):

pt = argmin
p

Ñx
∑

k=1

∥

∥Ft−1 (Xk)−Yp(k)

∥

∥

2

qt = argmin
q

Ñy
∑

j=1

∥

∥Xq(j) −F−1
t−1 (Yj)

∥

∥

2
(12)

We apply a nearest-neighbor search, similar to the one applied

for INCA, but instead of using single spectral feature vectors,

we use the context vectors defined in eqn. (4):

pt (k) = argmin
j

‖Ft−1 (Xk)−Yj‖
2

qt (j) = argmin
k

∥

∥Xk −F−1
t−1 (Yj)

∥

∥

2
. (13)

According to our preliminary experiments, an optimal ex-

haustive search for the exact solutions of (12) yields a neg-

ligible improvement compared to a nearest-neighbor search.

Substituting eqn. (6) into eqn. (10) and neglecting the

ends, the minimized term takes a similar form to the parallel

symmetrical cost presented in eqn. (8):

Ft = argmin
F







Ñx
∑

k=1

∥

∥F (xk)− ypt(k)

∥

∥

2
+

+

Ñy
∑

j=1

∥

∥xqt(j) −F−1 (yj)
∥

∥

2







. (14)

Consequently, any parallel conversion method minimizing

this squared error can be used as an auxiliary function, using

the parallelized training set -
{(

xk,ypt(k)

)

,
(

xqt(j),yj

)}

.

The classical GMM-based conversion, for example, can fit

this description since its parameters are evaluated using Least

Squares minimization of the MSE between the converted and

target vectors [1].

The TC-INCA algorithm, is summarized in Table 1. We

Table 1. Joint Cost Optimization Using TC-INCA.

Input: a non-parallel training set of context vectors {X,Y }

Initialization: set the initial conversion function to identity:

F0 (X) = X

Main Iteration: for t = 1, 2... perform the following steps:

1. Evaluate the matching functions, pt, qt, using eqn. (13).

2. Train an auxiliary conversion function using eqn. (14).

3. Evaluate the cost function L (pt, qt,Ft) using eqn. (5) and

check convergence.

Output: conversion and matching functions p, q,F .

note that if no context frames are considered, meaning T = 0,

TC-INCA essentially becomes identical to INCA.
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4. EXPERIMENTAL RESULTS

4.1. Experimental Conditions

Three U.S. English speakers (two females and one male)

taken from the CMU ARCTIC database [15] were used for

our objective and subjective evaluations in two directions -

female to female (F2F) and female to male (F2M). Analysis,

synthesis and extraction of 24 MFCCs were performed using

an available toolkit [16]1, based on the Harmonic Plus Noise

Model (HNM) [17, 18].

We used both parallel and non-parallel sets for training,

consisting of (5, 10, 50, 100) sentences, and an additional set

of 50 parallel sentences for testing, all sampled at 16kHz. The

pitch was converted using a simple linear function using the

mean and the standard deviation values of the source and tar-

get speakers.

4.2. Objective Evaluations

We used two objective criteria to evaluate the performance of

the trained matching and conversion functions: phonetic ac-

curacy, measured by the percentage of training vectors having

the same phonetic label as their matches, and Normalized Dis-

tance (ND), measured using the test set, as the Log-Spectral

Distortion (LSD) between the converted and target spectra,

divided by the LSD between the source and target spectra.

We used the classical GMM method for training the

auxiliary and final conversion functions using full covari-

ance matrices and (1, 2, 3, 4) mixtures for both methods.

TC-INCA was trained using several context lengths, T =
(2, 4, 8, 10, 14, 18, 24, 26). The number of mixtures (for both

methods) and context length (for TC-INCA) were tuned for

F2F and F2M and for every training set size, so that maximal

(training) accuracy would be attained. Generally, the best

accuracy was obtained using longer context T ∈ [14, 24] for

the parallel sets, than for the non-parallel sets T ∈ [2, 10].
Also, as more training sentences were used, more mixtures

were preferred.

Fig. 2 presents the accuracy values attained by TC-INCA

compared to INCA, averaged over both examined directions

(F2F and F2M). TC-INCA leads to significantly higher pho-

netic accuracy, using either parallel or non-parallel training

sets. The ND values achieved by both methods are very sim-

ilar (±1%), in the range of 0.7-0.75 for the parallel sets and

0.75-0.8 for the non-parallel sets. Nevertheless, the improve-

ment in accuracy has a great influence on the perceived qual-

ity and similarity to the target, as presented in the next section.

4.3. Subjective Evaluations

We carried out two preference tests comparing TC-INCA to

INCA. Quality tests - in which the listeners were asked to

1We gratefully thank D. Erro for providing us the analysis/synthesis tools.
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(b) Non-parallel sets

Fig. 2. Maximal accuracy [%] (39 phonemes) vs. training set

size obtained by TC-INCA and INCA.

indicate the sentence of better quality, and identity tests, in

which the listeners were asked which sentence is more simi-

lar to a reference signal (the target speaker). Following He-

lander et. al [19], we allowed the listeners to answer ”equal”,

if they felt they could not decide between the two options. In

each test (quality and identity), 10 different randomly ordered

(pairs or triplets, correspondingly) were examined by 10 lis-

teners, all 20-30 years old non-experts. For these evaluations

we used non-parallel training sets consisting of 5 sentences.

Table 2 presents the overall results, averaged over both F2F

and F2M conversions. The advantage of TC-INCA is well

demonstrated; most listeners marked it as having a higher

quality and as more similar to the target speaker, than INCA.

Table 2. Subjective Preference Evaluations.

INCA [%] TC-INCA [%] Equal [%]

Quality 20± 2 73± 2 7± 1
Identity 33± 2 54± 2 13± 1

5. CONCLUSION

We presented a non-parallel training process as a minimiza-

tion problem of a joint cost, considering both temporal-

context alignment and conversion functions. We propose TC-

INCA (a generalization of INCA) for iteratively performing

this minimization. We show that TC-INCA reduces the joint

cost (and therefore INCA too) and prove its convergence.

Objectively, TC-INCA leads to a considerable increase

of alignment accuracy and to similar spectral distance val-

ues, compared to INCA. Subjective evaluations demonstrate

the great influence of accuracy improvement: TC-INCA was

rated higher, both in terms of quality and similarity to the tar-

get speaker.
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