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ABSTRACT 

 

Voice Conversion (VC) is a technique to convert speech 

data of source speaker into ones of target speaker. VC has 

been investigated and statistical VC is used for various 

purposes. Conventional VC uses acoustic features, however, 

the audio-only VC has suffered from the degradation in 

noisy or real environments. This paper proposes an Audio-

Visual VC (AVVC) method using not only audio features 

but also visual information, i.e. lip images. Eigenlip feature 

is employed in our scheme as visual feature. We also 

propose a feature selection approach for audio-visual 

features. Experiments were conducted to evaluate our 

AVVC scheme comparing with audio-only VC, using noisy 

data. The results show that AVVC can improve the 

performance even in noisy environments, by properly 

selecting audio and visual parameters. It is also found that 

visual VC is also successful. Furthermore, it is observed that 

visual dynamic features are more effective than visual static 

information. 

 

Index Terms— voice conversion, audio-visual 

processing, noise robustness, feature selection. 

 

1. INTRODUCTION 

 

Voice Conversion (VC), namely speech conversion, is a 

technique to convert speech signals of source speaker into 

ones of target speaker [1]. VC is expected in various 

applications, and one of them is for handicapped people who 

cannot speak speech due to laryngectomy. By VC 

techniques, their electrolaryngeal speech can be converted 

into normal speech signals [2]. In order to develop such a 

system, VC must be available on mobile devices in real 

environments. However, there is a crucial issue that the 

quality of converted speech heavily decreases particularly in 

the situation where noise exists. To enhance the noise 

robustness, we have proposed new acoustic feature and 

succeeded to increase the quality in noisy conditions [3]. As 

the other noise-robust method, VC using Non-negative 

Matrix factorization (NMF) has been investigated [4]. 

For speech recognition in noisy environments, multi-

modal Automatic Speech Recognition (ASR) has been 

investigated [5-7]. It utilizes not only speech signals but also 

additional information obtained from the other modality. A 

visual information e.g. lip pictures is typically employed as 

another modality. Since visual infor-mation is not affected 

by audio noise, the recog-nition performance can be 

improved in real conditions. 

From these viewpoints, we focus on Audio-Visual 

Voice Conversion (AVVC). In the paper [8], speech 

conversion was conducted and facial animation was 

generated using audio-visual features of source speakers. In 

this paper, we further concentrate on the noise robustness of 

AVVC, in order to build a noise-robust VC system in real 

environments. In particular, feature extraction methods are 

examined. Experiments were conducted using audio-visual 

parallel data with noises, to compare audio-only and visual-

only VC approaches as well as to evaluate the robustness of 

the feature extraction and AVVC itself. 

This paper is organized as follows: Conventional VC 

techniques are introduced in Section 2. Section 3 describes 

our AVVC method, particularly feature extraction. We 

conducted evaluation experiments in Section 4. Finally 

Section 5 concludes this paper. 

 

2. VOICE CONVERSION 

 

The section summarizes a statistical VC method using con-

ventional audio-only features [1]. A cross-speaker model is 

firstly built from training data. Secondly, using the model, 

output acoustic features of target speaker are obtained from 

input features of source speaker. Finally speech signal is 

generated using estimated parameters. Figure 1 illustrates 

the procedure.  

Before training, the same sentences spoken by source 

and target speakers are collected as a training data set. 

Feature vectors are extracted for each utterance pair made 

by source and target speakers (T1, T3). Let us denote a 

source feature by    and a target feature by   , where   
indicates time. Mel-CEPstrum (MCEP) coefficients are 

often employed as input and output acoustic features. 

Frame-level time alignments between    and    are then 

obtained applying dynamic time warping technique (T4). A 

cross-speaker model is subsequently built using these 

features, in which a joint probability  (     ) is computed 

(T5). GMM (Gaussian Mixture Model) is typically 

employed as the model. In the training, the following 

equation is applied:  
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Fig. 1. Conventional audio-only voice conversion. 
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where   denotes model parameters. F0 and aperiodic for 

speech generation are also extracted from target speech data 

and modeled by GMM (T6). 

A source feature sequence   [  
      

 ]
 

is 

computed from input speech signals (C1), where   indicates 

transposition of a vector. Using the trained GMM, output 

acoustic features are computed based on maximum 

likelihood estimation (C3); the output sequence  ̂ can be 

estimated as:  

 ̂         ( |   ) (2) 

where   [  
      

 ]
 

is a target sequence. Finally the 

voice conversion is done using the obtained output features 

as well as F0 and aperiodic parameters (C4, C5).  

 

3. AUDIO-VISUAL VOICE CONVERSION 

 

In this paper, we employ audio-visual features as input 

source features in the statistical VC described in Section 2. 

In audio-visual speech recognition / voice activity detection 

[9,10], visual features contribute to increase the robustness 

against acoustic noises. Therefore visual features are also 

expected to play the same role in VC. AVVC has another 

benefit. Larygectomees have a problem that the quality of 

electrolaryngeal speech is quite low. Since visual features 

are not affected, it is possible for the laryngectomees to 

acquire more clean speech, converting the electrolaryngeal 

speech. 

 

3.1. AVVC summary 

 

Basically, our proposed AVVC method has the similar 

framework as the audio-only VC method in Section 2. 

Figure 2 depicts our AVVC training and conversion 

techniques. Model training is conducted as below: 

 

T1. Extract audio and visual features of source speaker. 

 
Fig. 2. Proposed audio-visual voice conversion. 

 

T2. Combine both audio and visual features obtained in 

T1 into an audio-visual feature. 

T3. Extract audio features of target speaker. 

T4. Obtain time alignments for the audio features of both 

speakers in T1 and T3. 

T5. Using the features in T2 and T3 as well as the 

alignments in T4, build a GMM. 

T6. Make F0 and aperiodic GMMs in the same way. 

 

Voice conversion is performed as follows: 

 

C1. Extract audio and visual features of source speaker. 

C2. Combine both audio and visual features obtained in 

C1 into an audio-visual feature. 

C3. Using the audio-visual features in C2 and the model 

in T5, estimate the output feature for target speaker. 

C4. Estimate F0 and aperiodic parameters using features 

in C2 and GMMs in T6. 

C5. Generate converted speech from estimated 

parameters in C3 and C4. 

 

The difference from the audio-only VC is adding visual 

features to the input feature vectors for source speaker. Note 

that visual information of target speaker is not necessary in 

this framework. In the rest of this section, audio and visual 

feature extractions and feature combination are explained. 

 

3.2. Feature extraction 

 

3.2.1. Audio feature 

For source features, Fast Fourier Transform (FFT) is simply 

applied in order to reduce computational consumption. In 

contrast, for target features, STRAIGHT [11] is used to 

obtain high-resolution components, because the resolution 

of output features directly affects the quality of converted 

speech. Subsequently, mel-cepstral input features     and 

output features    are computed. 
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3.2.2. Visual feature 

In our AVVC, an eigenlip feature is employed as a visual 

parameters. The calculation of visual feature is based on the 

CENSREC-1-AV baseline method [12]. Principal 

component analysis is applied to lip images in a training 

data set in order to obtain eigenvectors (eigenlips). Using 

the eigenvectors, we can get eigenvalue components for 

each lip image. Because the visual frame rate is lower than 

the acoustic one, feature interpolation (upsampling) is 

conducted to the components so as to synchronize the 

feature rate. In this process, three-dimensional spline 

interpolation is adapted. Dynamic feature values are also 

obtained. Consequently, an input visual feature vector    , 
consisting of interpolated eigenvalue components as well as 

their derivatives, is completed. 

 

3.2.3. Combination of audio and visual features 

Audio and visual features are concatenated into an audio-

visual feature:  

   (   
     

 )
 

 (3) 

Higher dimension might cause the performance degradation 

in VC; it becomes difficult to estimate output features 

because the feature space is too wide due to the higher 

dimension [13]. 

Therefore, feature selection is proposed in our AVVC 

scheme. In both audio and visual features, parameters in 

lower dimensions are more informative than those in higher 

dimensions. Thus we extract subvectors from lower parts of 

original audio and visual features respectively, and after-

wards the concatenation is performed. For visual features, 

static and dynamic parameter selection is also considered. 

 

4. EXPERIMENT 

 

Experiments were conducted to evaluate our method, 

comparing with audio-only and visual-only VCs. The 

feature selection scheme is also investigated. 

 

4.1. Experimental condition 

 

Table 1 indicates experimental setup. Target data were 

chosen from an audio-visual corpus CENSREC-1-AV [12], 

whereas speech data for source speaker were recorded in 

clean condition. Note that CENSREC-1-AV includes 42 

training speaker, however, read texts are different by 

speakers. In order to collect parallel data, we recorded the 

utterances of which sentences are the same for one speaker 

in the database. Two kinds of noises were prepared, white 

noises at SNR=15dB and SNR=10dB, to disturb audio 

features of source speaker. Note that GMMs used in the 

experiments were trained under the clean condition. 

Each audio feature had 25 mel-cepstral coefficients, 

whereas visual feature was prepared consisting of 10 

eigenvalues with 10   and 10    parameters. We tested 10 

feature conditions, as shown in Table 2. The dimension was 

fixed as 25 among all the conditions. A1 corresponds to 

Table 1. Experimental setup. 

Data 

Task Japanese continuous digit 

Source spkr 1 male (recorded) 

Target spkr 1 male (CENSREC-1-AV) 

# utterances (train) 66 

# utterances (test) 10 

Audio 

Sample data [Hz] 16,000 

Frame size [msec] 5 

Frame length [msec] 5 

Visual 

Frame rate [fps] 30 (source), 29.97 (target) 

Image size 40 27 (1,080 dim) 

# pictures (PCA) 4,620 

GMM # mixtures 16 (F0), 32 (others) 

 

Table 2. Feature conditions.  
 A1 AV1 AV2 AV3 AV4 AV5 AV6 V1 V2 V3 

Audio feature 

(MCEP) 
25 15 5  

Visual 
feature 

static  10   10  10 10 5 10 

    10  10 10  10 10 5 

      10  10 10 5 10 10 

 

conventional audio-only VC. In AV1-AV3, 15-dimensional 

audio feature and 10-dimensional visual feature were 

combined. The visual feature included either of static,  , 

and    coefficients. Similarly, 5-dimensional audio and 20-

dimensional visual features were used in AV4-AV6. In 

these cases, two of the three components (static,  , and   ) 

were chosen. In V1-V3, visual-only VCs were performed. 

To adjust the feature size, five coefficients were removed 

from the original visual features. 

 

4.2. Objective evaluation 

 

Each feature was evaluated by objective evaluation score: 

Mel-Cepstral Distortion (Mel-CD) [1]. The 0th value 

corresponding to a power coefficient is not included. A 

small Mel-CD score means the conversion was successfully 

done. 

Figure 3 shows experimental results of audio-only, 

visual-only and audio-visual VCs in the three environments. 

In these figures, the vertical axes indicate Mel-CD [dB]. 

According to the first figure (1), audio-only and audio-

visual VCs achieved almost the same performance (around 

4.2dB), followed by visual-only VC. However, it is obvious 

that audio-only VC (A1) was drastically degraded in noisy 

conditions. Compared to the audio-only result, audio-visual 

VCs (AV2, AV5) could improve the quality of generated 

speech. This indicated that visual information can work 

effectively in noisy conditions. It is also notable that visual- 

only VC achieved roughly 4.5dB performance (see (4)). 

This might be caused by small vocabulary, but still there is a 

possibility to realize a large-vocabulary system converting 

from lip movies to speech signals. 

In the second result (2) for AV1, AV2 and AV3, the 

method using 15 MCEPs and visual static parameters (AV1) 

was strongly affected by noise, while the others were not. 

And in the third result (3) for AV4, AV5, and AV6, the 
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Fig. 3. Results of objective evaluation. 

 

method employing 20-dimensional visual derivatives in 

addition to 5 MCEPs (AV5) obviously achieved the best 

performance. Since the rest two methods included static 

features, it turns out that visual static components are not so 

useful, on the other hand, visual derivative components, 

particularly   parameters, are effective. In other words, if 

we denote the performances of static,  , and   components 

by   ,   , and   respectively, the relationship: 

         (4) 

can be experimentally obtained. According to previous 

works [14, 15], ASR in noisy environments has the same 

tendency; dynamic features are more reliable than static one. 

We further investigate this phenomenon in near future. 

 

4.3. Subjective evaluation 

 

We conducted subject evaluations for speech quality and 

speaker individuality. In the test of speech quality, samples 

of converted speech by the conventional method [1] and by 

the proposed method were presented to listeners as A and B 

in a random order. Listeners were asked which sample 

sounded more natural. As the test of speaker individuality, 

an XAB test was conducted. First, we presented a target 

speech X, and converted speeches by the conventional 

method and by the proposed method as A and B in a random 

order. Note that both A and B are converted from the source 

speaker into the target speaker X. In each XAB set, we 

presented speech samples of the same utterance. Listeners 

were asked to choose which of A or B sounded more similar 

to X in terms of speaker individuality. In the both 

experiments, each subject gave a relative assessment by 

choosing three-scale scores: (1) A, (2) neutral, and (3) B. 

 
Fig. 4. Results of subjective evaluation. 

 

The number of utterances was two in the evaluation set, and 

the number of subjects was 15. The converted speeches in 

the subject evaluations were generated under the noise 

environment (SNR10dB). And we employed AV2 as a 

proposed method because it was the best performance in the 

noise environment (SNR10dB). 

Figure 4 shows the results of subject evaluation. The 

performances for speech quality and speaker individuality of 

the proposed method were better than those of the conven- 

tional method. When authors listened each converted speech, 

we felt that the converted speeches by the conventional 

method were artificial, while the converted speeches by the 

proposed method included block noise and natural speech.  

 

5. CONCLUSION 

 

This paper proposes audio-visual voice conversion to 

improve quality of converted speech in noisy environments. 

Several audio and visual feature combinations were tested. 

Experimental results indicate our proposed method can 

successfully improve the performance, and that visual 

dynamic features are especially effective. 

Our future works include: evaluation of our scheme in 

other noise conditions and visually difficult situations, 

development of real-time system applicable in real 

environments, investigation of the relation between the 

performance and static/dynamic features in several 

modalities.  Global variance and dynamic feature might be 

explored. 
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