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ABSTRACT

In this paper, we present a voice conversion (VC) method that uti-
lizes conditional restricted Boltzmann machines (CRBMs) for each
speaker to obtain time-invariant speaker-independent spaces where
voice features are converted more easily than those in an original
acoustic feature space. First, we train two CRBMs for a source and
target speaker independently using speaker-dependent training data
(without the need to parallelize the training data). Then, a small
number of parallel data are fed into each CRBM and the high-order
features produced by the CRBMs are used to train a concatenating
neural network (NN) between the two CRBMs. Finally, the entire
network (the two CRBMs and the NN) is fine-tuned using the acous-
tic parallel data. Through voice-conversion experiments, we con-
firmed the high performance of our method in terms of objective and
subjective evaluations, comparing it with conventional GMM, NN,
and speaker-dependent DBN approaches.

Index Terms— Voice conversion, conditional restricted Boltz-
mann machine, deep learning, speaker specific features

1. INTRODUCTION

In recent years, voice conversion (VC), a technique used to change
specific information in the speech of a source speaker to that of a tar-
get speaker while retaining linguistic information, has been garner-
ing much attention in speech signal processing. VC techniques have
been applied to various tasks, such as speech enhancement [1], emo-
tion conversion [2], speaking assistance [3], and other applications
[4, 5]. Most of the related work in VC focuses not on f0 conversion
but on the conversion of spectrum features, and we conform to that
in this report as well.

Various statistical approaches to VC have been studied so far,
for example those discussed in [6, 7]. Among these approaches,
the Gaussian Mixture Moel (GMM) -based mapping method [8] is
widely used, and a number of improvements have been proposed.
Toda et al. [9] introduced dynamic features and the global variance
(GV) of the converted spectra over a time sequence. Helander et al.
[10] proposed transforms based on Partial Least Squares (PLS) to
prevent the over-fitting problem encountered in standard multivariate
regression.

However, the GMM-based approaches rely on “shallow” voice
conversion, a method based on piecewise linear transformation. The
shape of the vocal tract is generally non-linear, so non-linear voice
conversion is more compatible with human speech. To capture the
characteristics of speech more precisely, it is necessary to have a
deeper non-linear architecture with more hidden layers. One exam-
ple of deeper VC methods is proposed by Desai et al. [11] based
on Neural Networks (NN). Nakashika et al. [12] also proposed a
VC method using speaker-dependent restricted Boltzmann machines

(RBMs) or deep belief networks (DBNs [13]) to achieve non-linear
deep transformation. Wu et al. [14] utilized a conditional restricted
Boltzmann machine (CRBM [15]) to obtain latent non-linear rela-
tionships between the speech of a source and that of a target speaker.
It was reported that these non-linear VC approaches achieved rel-
atively higher performance than linear transformation approaches
[11, 12, 14].

In this paper, we extend our earlier work in [12] to systemati-
cally capture time information as well as latent (deep) relationships
between a source speaker’s and a target speaker’s features in a single
network, accomplished by combining speaker-dependent CRBMs
and a concatenating NN. CRBM is a non-linear probabilistic model
used to represent time series data that consists of three factors: (i)
an undirected model between binary latent variables and the cur-
rent visible variables, (ii) a directed model from the previous vis-
ible variables to the current visible variables, and (iii) a directed
model from the pre-visible variables to the latent variables. In our
approach, we first train two exclusive CRBMs for the source and
the target speakers independently using segmented training data pre-
pared for each speaker, then train a NN using the projected features,
and finally fine-tune the networks as a single network for VC. Be-
cause the training data for the source speaker CRBM include various
phonemes particular to the speaker, the speaker-dependent network
tries to capture the abstractions to maximally express the training
data that have abundant speaker individuality information and less
phonological information. Furthermore, the network inputs a collec-
tion of time-series feature vectors (e.g. the directed models (ii) and
(iii) absorb time-related information), so the latent space captures the
remaining information (the time-invariant features). Therefore, we
expect that if feature conversion is conducted in such time-invariant,
individuality-emphasized high-order spaces, it is much easier to con-
vert voice features than if using the original spectrum-based space.

2. PRELIMINARIES

Our voice conversion system uses conditional restricted Boltzmann
machines (CRBMs) to capture high-order conversion-friendly fea-
tures. We briefly review the CRBM and its fundamental model, the
restricted Boltzmann machine (RBM), in this section.

2.1. RBM

RBM is an undirected graphical model that defines the distri-
bution of visible variables with binary hidden (latent) variables
[16]. The joint probability p(v, h) of binary-valued visible units
v = [v1, · · · , vI ]

T , vi ∈ {0, 1} and binary-valued hidden units
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h = [h1, · · · , hJ ]T , hj ∈ {0, 1} is defined as follows:

p(v, h) =
1

Z
e−E(v,h) (1)

E(v, h) = −bT v − cT h − vT Wh (2)

Z =
X

v,h

e−E(v,h) (3)

where, W ∈ RI×J , b ∈ RI×1, and c ∈ RJ×1 are the weight-
parameter matrix between visible units and hidden units, a bias vec-
tor of visible units, and a bias vector of hidden units, respectively.

Because there are no connections between visible units or be-
tween hidden units, the conditional probabilities p(h|v) and p(v|h)
form simple equations as follows:

p(hj = 1|v) = σ(cj + vT W:j) (4)

p(vi = 1|h) = σ(bi + hT W T
i: ) (5)

where W:j and Wi: denote the j-th column vector and the i-th row
vector, respectively, and σ(x) indicates an element-wise sigmoid
function; i.e., σ(x) = 1./(1 + e−x).

For parameter estimation, the log-likelihood of a collection of
visible units L = log

Q

n p(vn) is used as an evaluation function.
Differentiating partially with respect to each parameter, we obtain:

∂L
∂Wij

= 〈vihj〉data − 〈vihj〉model (6)

∂L
∂bi

= 〈vi〉data − 〈vi〉model (7)

∂L
∂cj

= 〈hj〉data − 〈hj〉model (8)

where, 〈·〉data and 〈·〉model indicate expectations of input data and
the inner model, respectively. However, it is generally difficult to
compute the second term, so typically, expectation of the recon-
structed data 〈·〉recon computed by Eqs. (4) and (5) is alternatively
used [13]. Using Eqs. (6), (7), and (8), each parameter can be up-
dated by stochastic gradient descent.

2.2. CRBM

CRBM is an extended version of RBM proposed by Taylor et
al. [15], and is suitable for the representation of time series
data. In addition to the use of an undirected model as in RBM,
CRBM also employs directed models between binary hidden units
h(t) = [h

(t)
1 , · · · , h

(t)
J ]T , h

(t)
j ∈ {0, 1} and a collection of binary

visible units {v(p)}t
p=t−P , v(p) = [v

(p)
1 , · · · , v

(p)
I ]T , v

(p)
i ∈ {0, 1}

at the current frame t. For simplicity, we choose P = 1 in this paper
(P is the number of previous frames from the current frame taken
into account). In this model, there are three types of parameters to
be estimated: Wv′v ∈ RI×I (a directed weight matrix from v(t−1)

to v(t)), Wv′h ∈ RI×J (a directed weight matrix from v(t−1) to
h(t)), and Wvh ∈ RI×J (an undirected weight matrix between v(t)

and h(t)). These weights are estimated using contrastive divergence
in a similar manner to RBM by minimizing the following likelihood:

p(v(t)|v(t−1)) =
1

Z

X

h(t)

e−E(v(t),h(t)|v(t−1)) (9)

where Z is a normalized term, and the energy function E becomes:

E(v(t), h(t)|v(t−1)) = −bT v(t) − cT h(t) − v(t)T
Wvhh(t)

−v(t−1)T
Wv′vv(t) − v(t−1)T

Wv′hh(t).
(10)

We obtain the following partial differential equations to the log-
likelihood L = log

Q

t p(v(t)|v(t−1)):

∂L
∂Wv′vi′i

= 〈v(t)
i v

(t−1)

i′ 〉data − 〈v(t)
i v

(t−1)

i′ 〉model (11)

∂L
∂Wv′hi′j

= 〈v(t−1)

i′ h
(t)
j 〉data − 〈v(t−1)

i′ h
(t)
j 〉model (12)

The other parameters related to the undirected model (Wvh, b and
c) are also calculated from equations (6), (7) and (8) by proper sub-
stitution of variables. Once the parameters are estimated, forward
inference (the conditional probability of h(t) given v(t) and v(t−1))
and backward inference (the conditional probability of v(t) given
h(t) and v(t−1)) are respectively written as:

p(h
(t)
j = 1|v(t), v(t−1)) = σ(cj + v(t)T

Wvh:j + v(t−1)T
Wv′h:j )

(13)

p(v
(t)
i = 1|h(t), v(t−1)) = σ(bi + h(t)T

W T
vhi: + v(t−1)T

Wv′v:j ).

(14)

3. PROPOSED VOICE CONVERSION

In general, the less phonological and the more individuality-
emphasized features a source input includes for a speaker, the
easier it is to convert the source features to target features. This
paper proposes voice conversion using such features.

Fig. 1 shows an overview of our proposed voice conversion sys-
tem. In our approach, we independently train CRBMs for each
speaker beforehand as shown in Fig. 1 (a). Parameters x(t) and
y(t) (x(t−1) and y(t−1)) are acoustic feature vectors (e.g. visible
units in CRBM), such as MFCC, at frame t (at frame t − 1) for a
source speaker (and a target speaker). The CRBM described in sub-
section 2.2 feeds binary-valued visible units, so training data for each
CRBM are converted to binary using a sigmoid function beforehand.

For the source speaker, for instance, the parameter matrix Wxh

is estimated so as to maximize the probability of T chained training
samples p(x) =

QT
t=1 p(x(t)|x(t−1)) where x(0) = 0 ∈ RI×1.

Because each unit in the hidden vector h
(t)
x is independent from the

others, it captures the common characteristics in the visible units.
The training data usually include various phonemes and unvarying
speaker-specific features; thus, we expect that the extracted features
in h

(t)
x represent speaker-individual information. Furthermore, since

we estimate the time-related matrices Wx′h, Wx′x jointly with the
static term Wxh as shown in Eq. (10) using the training data, they
absorb time-related information and Wxh can focus on capturing
other information. This means that the obtained features in the hid-
den units h

(t)
x also help to capture speaker-individualities that are

not related to time. This is true for either the source or the target
speaker.

In our approach, we convert such individuality-emphasized fea-
tures (from h

(t)
x to h

(t)
y ) using a neural network (NN) that has L+2

layers (L is the number of hidden layers; typically, L is 0 or 1) as
shown in Fig. 1 (b). To train the NN, we use the parallel training
set {xt, yt}T ′

t=0 where T ′ is the number of frames of the parallel
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data1. During the training stage of the NN, the projected vectors of
the source speaker’s acoustic features h

(t)
x are the inputs, and the

projected vectors of the corresponding target speaker’s features h
(t)
y

are outputs, calculated as2:

h(t)
x = σ(Wxhx(t) + Wx′hx(t−1) + cx) (15)

h(t)
y = σ(Wyhy(t) + Wy′hy(t−1) + cy) (16)

from Eqs. (13) and (14), where cx and cy are bias vectors of for-
ward inference for a source speaker and a target speaker, respec-
tively. Weight parameters of the NN {Wl, dl}L

l=0 are estimated to
minimize the error between the output η(h

(t)
x ) and the target vector

h
(t)
y as is typical for a NN. Once the weight parameters are esti-

mated, an input vector h
(t)
x is converted to:

η(h(t)
x ) =

L
K

l=0

ηl(h
(t)
x ) (17)

ηl(h
(t)
x ) = σ(Wlh

(t)
x + dl) (18)

where
JL

l=0 denotes the composition of L + 1 functions. For in-
stance,

J1
l=0 ηl(z) = σ(W1σ(W0z + d0) + d1) for a NN with

one hidden layer.
To convert the output of the NN to the acoustic features of the

target speaker, we just use backward inference of a CRBM using Eq.
(14), resulting in:

p(y(t)|h(t)
y , y(t−1)) = σ(W T

yhh(t)
y + Wy′yy(t−1) + by) (19)

where by is a bias vector of backward inference for the target
speaker.

Summarizing the above discussion, a voice conversion function
of our method from a source acoustic vector x(t) to a target vector
y(t) at frame t, given the previous vectors x(t−1) and y(t−1), is
written as:

y(t) =

L+2
K

k=0

σ(W(k)x
(t) + a(k)(x

(t−1), y(t−1))) (20)

where W(k) and a(k)(x
(t−1), y(t−1)) denote elements of a set of

dynamic parameters Θ(t) = {W , a(t)}:

W = {W(k)}L+2
k=0 (21)

= {Wxh, W0, · · · , WL, Wyh
T } (22)

a(t) = {a(k)(x
(t−1), y(t−1))}L+2

k=0 (23)

= {Wx′hx(t−1) + cx, d0, · · · , dL, Wy′yy(t−1) + by}.
(24)

The conversion function shown in Eq. (20) implies a dynamic
model of a (L + 4)-layer NN with sigmoid activated functions.
Therefore, we can fine-tune each parameter of the entire network
consisting of the two CRBMs and the NN by back-propagation
using the acoustic parallel data.

As Eq. (20) indicates, we need a current acoustic vector from
a source speaker, and previous vectors from both a source speaker
and a target speaker to estimate the target speaker’s current acoustic

1For sake of simplicity, we used the same parallel data for both training
of the CRBMs and the NN in our experiments (T ′ = T ).

2We use the expected values of h
(t)
x and h

(t)
y as the latent features.

Wxh
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yh

Wxn

Wny

Wx�x

Wx�h

Wxh

x(t�1) x(t)

(a) (b)

h(t)
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h(t)
x

h(t)
y

n(t)

Wy�y

y(t)y(t�1)

h(t)
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Wy�h

Wx�x

Wx�h

x(t�1) x(t)

Wy�y

y(t)y(t�1)

Wy�h

...

...
Wyh

Fig. 1. (a) CRBMs for a source speaker (below) and a target speaker
(above), (b) our proposed voice conversion architecture combining
two speaker-dependent CRBMs with a NN.

vector. However, we never know the correct previous vector of the
target speaker, so in practice, we use the last converted (estimated)
vectors as the previous target vector iteratively, starting from a zero
vector. We confirmed that this approach worked well through our
preliminary experiments.

Meanwhile, a conventional GMM-based approach [9] with M
Gaussian mixtures converts the source features x as

y =
M

X

m=1

P (m|x)(Σ(m)
yx Σ(m)−1

xx (x − µ(m)
x ) + µ(m)

y )

(25)

P (m|x) =
w(m)N (x; µ

(m)
x ,Σ

(m)
xx )

PM
m=1 w(m)N (x; µ

(m)
x ,Σ

(m)
xx )

(26)

and is an additive model of non-linear functions. Our approach us-
ing Eq. (20) is based on the composite function of multiple different
non-linear functions feeding time-series data. Therefore, it is ex-
pected that our composite model can represent more complex rela-
tionships than the conventional GMM-based method and other static
network approaches [11, 12].

4. EXPERIMENTS

4.1. Setup

We conducted voice conversion experiments using the ATR Japanese
speech database [17], comparing our method (“Our”) with the well-
known GMM-based approach (“GMM”), conventional NN-based
voice conversion (“NN”) and our previous work [12] (“DBN”).
From this database, we used a male speaker (MMY) for the source,
and a female speaker (FTK) for the target. As an input vector,
24-dimensional MFCC features were calculated from STRAIGHT
spectra [18] using filter-theory [19] to decode the MFCC back to
STRAIGHT spectra in the synthesis stage. For the GMM-based
approach (64 mixtures), we further calculated delta (24 dimensions)
and delta-delta (24 dimensions) features as typically done for GMM-
based VC, and concatenated them as a super vector (72 dimensions
in total) to provide a fair comparison with our method (that operates
using multiple frames x(t) and x(t−1)). The parallel data of the
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Table 1. Various architectures used for the preliminary experiment.
Arcitectures NN DBN [12] Our method Layers

arc. 1 [24-24-24-24] [24:24-24:24] [(24,24):24-(24,24):24] 4
arc. 2 [24-48-48-24] [24:48-48:24] [(24,24):48-(48,24):24] 4
arc. 3 [24-24-24-24-24-24] [24:24:24-24:24:24] [(24,24):24:24-24:(24,24):24] 6
arc. 4 [24-48-24-24-48-24] [24:48:24-24:48:24] [(24,24):48:24-24:(48,24):24] 6

4.80

5.10

5.40

5.70

6.00

arc. 1 arc. 2 arc. 3 arc. 4

M
C

D
 (d

B
)

Type of architectures

NN DBN Our

Fig. 2. Averaged mel-cepstral distortion with changing network ar-
chitetures (N = 10, 000).

4.80

5.10

5.40

5.70

6.00

2k 4k 6k 8k 10k

M
C

D
 (d

B
)

N (Number of training frames)

NN GMM DBN Our

Fig. 3. Averaged mel-cepstral distortion for each method.

source/target speakers processed by Dynamic Programming were
created from 216 word utterances in the dataset, and were used
for training. Note that the parallel data were prepared for the NN
and GMM methods, and two speaker-wise CRBMs were trained
independently. We set the learning rate and the number of epochs
in the gradient descent-based training of CRBMs be 0.01 and 200,
respectively. For the objective test, 20 sentences (about 70 sec. long)
that were not included in the training data were arbitrarily selected
from the database. For the objective evaluation, we used MCD
(mel-cepstral distortion) to measure how close the converted vector
is to the target vector in mel-cepstral space. We calculated the MCD
for each frame in the training data, and averaged the MCD values
for the final evaluation.

4.2. Evaluation

We first investigated how our approach works as the architecture of
the VC network changes, comparing it to conventional NN-based
VC and DBN-based VC with similar architecture. In this prelimi-
nary experiment, 4 types of architectures are compared, where we
changed the number of layers and the number of units in each layer

1

2

3

3

4

5

Our DBN GMM NN

Pr
ef

er
en

ce
 sc

or
e

Speaker individuality
Naturalness

Fig. 4. MOS scores w.r.t. speaker individuality and naturalness. The
error bars show 95% confidence intervals.

as listed in Table 1. The values in the table indicate the number of
units from the source layer to the target layer. For our method, for
instance, the numbers are described as [CRBM for source - NN -
CRBM for target]. Fig. 2 compares the averaged MCD obtained for
each architecture. As shown in Fig. 2, the deeper architecture (such
as “arc. 3”) does not always provide better results than shallower
architectures. The best architecture using our method was “arc. 2”,
so the four-layer architecture “arc. 2” is used for all the remaining
experiments reported in this paper.

Fig. 3 and Fig. 4 summarize the experimental results, compar-
ing each method with respect to objective and subjective criteria,
respectively. For the subjective evaluation, MOS (mean opinion
score) listening tests were conducted, where 9 participants listened
to pairs of an original target speech signal (generated from analysis-
by-synthesis) and the converted speech signals for each method, and
then selected how close the converted speech sounded to the original
one in terms of speaker individuality and naturalness on a 5-point
scale (5: excellent, 4: good, 3: fair, 2: poor, and 1: bad). As shown
in these figures, our approach (“Our”) outperformed other conven-
tional methods (GMM, DBN and NN) in both criteria (all differences
are significant at a significance level of 0.01). The reason for the im-
provement is attributed to the fact that our time-invariant high-order
conversion system using CRBMs is able to capture and convert the
abstractions of speaker individualities better than the other methods.
Especially as shown in Fig. 4, our approach achieved high perfor-
mance in naturalness. This is because the CRBMs captured time-
related information and alleviated jaggy noise caused by frame-by-
frame conversion.

5. CONCLUSION

We presented a voice conversion method that combines speaker-
dependent CRBMs and a NN to extract speaker-individual informa-
tion for specch conversion. Through experiments, we showed im-
provement of speech conversion in terms of MCD and MOS criteria
when compared with the well-known conventional GMM-based ap-
proach and other network-based approaches.
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