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ABSTRACT

The spectral envelope is the most natural representation of speech
signal. But in voice conversion, it is difficult to directly model the
raw spectral envelope space, which is high dimensional and strongly
cross-dimensional correlated, with conventional Gaussian distribu-
tions. Bidirectional associative memory (BAM) is a two-layer feed-
back neural network that can better model the cross-dimensional cor-
relations in high dimensional vectors. In this paper, we propose to
reformulate BAMs as Gaussian distributions in order to model the
spectral envelope space. The parameters of BAMs are estimated us-
ing the contrastive divergence algorithm. The evaluations on likeli-
hood show that BAMs have better modeling ability than Gaussians
with diagonal covariance. And the subjective tests on voice conver-
sion indicate that the performance of the proposed method is sig-
nificantly improved comparing with the conventional GMM based
method.

Index Terms— Spectral envelope modeling, bidirectional asso-
ciative memory, contrastive divergence, voice conversion

1. INTRODUCTION

Voice conversion (VC) is a technique that modifies speech of one
speaker (source speaker) in order to make it sound like that of an-
other certain speaker (target speaker), while keeping the linguistic
information unchanged.

Many methods have been proposed to build the spectral map-
ping relationship between source and target speakers. Among these
methods, joint density GMM (JDGMM) [1] is one of the mainstream
statistical approaches for its stable performance. However, speech
converted by JDGMM suffers from serious over-smoothing prob-
lem [2] [3]. This problem mainly comes from two factors. The first
one is the use of high-level spectral features [4], such as line spec-
tral pairs and mel-cepstra, which are extracted from the raw spectra
of speech. Some detailed characteristics on the raw spectra are lost
during the extraction process. The second one is the statistical aver-
aging of the Gaussian distribution. In JDGMM, the mean vectors of
target conditional distributions are very close to the mean vectors of
the target marginal distributions [5], which are the weighted averag-
ing of all training samples. The averaging operation removes most
of the detailed characteristics in the spectra, and results in a muffled
sound in the converted speech. Both factors attribute to the difficul-
ty in estimating the covariance matrices of GMM. Full covariance

This work was partially funded by the National Nature Science Founda-
tion of China (Grant No. 61273032, Grant No. 61273264) and the National
973 program of China (Grant No. 2012CB326405).

matrices are difficult to learn, especially for high dimensional fea-
tures. Therefore, diagonal covariance matrices are usually adopted
to model feature space with weakly cross-dimensional correlations,
e.g. mel-cepstrum.

There are some approaches attempting to solve this problem
in JDGMM-based framework, such as considering global vari-
ance (GV) in maximum output probability parameter generation
(MOPPG) [3], directly modeling the spectral feature trajectories [6].
Restricted Boltzmann machine (RBM) [7] has been adopted to re-
place Gaussian distribution in modeling the spectral envelope at each
HMM state in the HMM-based statistical parametric speech synthe-
sis [4]. Though this modeling method can improve the conversion
performance when it is applied in VC [8], the performance is closely
related to the estimation of the modes of conditional distributions.

In this paper, we propose a new method to model raw spectral
envelopes. We reformulate the two-layer feedback neural network
BAMs as Gaussian distributions. The cross-dimensional correlation-
s in spectral envelopes can be well modeled by the weights of BAM
that interact between the neurons from the two layers. The con-
trastive divergence (CD) algorithm with 1-step Gibbs sampling [9]
is adopted to estimate the parameters of BAM. Experimental results
show that BAMs outperform Gaussians in describing the distribu-
tion of raw spectral envelope space, and the conversion performance
is significantly improved.

This paper is organized as follows: Section 2 gives a brief re-
view on JDGMM-based VC. Our proposed method is described in
section 3. In section 4, we will present the experimental results. The
conclusion is given in section 5.

2. VOICE CONVERSION BASED ON JDGMM

Let Xt = [x�
t ,Δx�

t ,Δ
2x�

t ]
� and Yt = [y�

t ,Δy�
t ,Δ2y�

t ]�

be the 3D dimensional source and target feature vectors at frame
t, respectively. The operator [·]� denotes matrix transposition, xt,
Δxt and Δ2xt represent the static, dynamic and acceleration feature
components of source spectra, yt, Δyt and Δ2yt represent those of
target spectra, D is the dimension of static feature vector.

In JDGMM based method, the probability density function of
the joint feature space Zt = [X�

t ,Y �
t ]� is modeled by a GMM
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vector and covariance matrix of the m-th mixture component, and
Σ

(xx)
m , Σ(xy)

m , Σ(yx)
m , Σ(yy)

m are usually set as diagonal matrices.
At conversion stage, for an input sentence, the feature sequence

is X = [X�
1 ,X�

2 , ...,X�
T ]�, T is the total number of frames, the

converted static feature sequence y = [y�
1 ,y�

2 , ...,y�
T ]� can be

generated by the maximum output probability criterion as

y∗ = argmax
y

P (Y |X,λ(z)), (2)

s.t. Y = My, (3)

where M is a 3DT×DT dimensional matrix that is used to generate
the feature sequence consisting of static, dynamic and acceleration
components from static feature sequence.

As the conditional probability distribution of target feature is a
GMM, the sub-optimal mixture sequence m̂ = {m̂1, · · · m̂T } is
usually adopted to reduce the computational complexity [3]. Then
the conditional distribution can be approximated by a single Gaus-
sian distribution whose mean vector and covariance matrix are

μ
(y|x)
m̂t

= μ
(y)
m̂t

+Σ
(yx)
m̂t

Σ
(xx)−1

m̂t
(Xt − μ
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m̂t

), (4)

Σ
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m̂t

= Σ
(yy)
m̂t

−Σ
(yx)
m̂t

Σ
(xx)−1

m̂t
Σ

(xy)
m̂t

, (5)

where m̂t = argmaxm P (m|Xt,λ
(z)). Thus, the converted fea-

ture sequence can be generated with a closed-form solution as

y∗ = (M�U−1
m̂ M)−1M�U−1

m̂ Em̂, (6)

where Em̂ and Um̂ are the concatenated conditional mean vector
and covariance matrices in the sub-optimal sequence m̂.

3. SPECTRAL ENVELOPE MODELING WITH
BIDIRECTIONAL ASSOCIATIVE MEMORIES

3.1. Bidirectional Associative Memory

A BAM [10] is a special feedback neural network that can store the
patterns of binary vector pairs. Once one pattern is given, the net-
work can recall the other one. It has been applied in the area of
pattern recognition, signal processing, etc.

For this energy-based model, the patterns of input vectors are
stored in the interaction matrix W at a local minimum of the sys-
tem energy. As demonstrated in Fig.1, the BAM is made up of two
symmetrically connected layers that has no interconnections among
neurons in the same layer, thus the energy function of this network
is defined as

E(a, b) = −a�Wb, (7)

where a = [a1, a2, ..., aN ]� and b = [b1, b2, ..., bP ]
� are binary

stochastic variables corresponding to the neurons in the two layers
respectively. W is learned under Hebbian law.

3.2. Reformulating BAM as a Gaussian Probability Model

In this paper, instead of using BAM by the conventional way, we
develop a probability model based on it and extend it from the binary
form to the Gaussian form in order to model the real-valued data.

When the neurons in the BAM correspond to Gaussian stochas-
tic variables with zero mean, the energy function of this BAM is
written as

E(a, b) =
N∑
i=1

a2
i

2σ2
a,i

+
P∑

j=1

b2j
2σ2

b,j

−
N∑
i=1

P∑
j=1

wi,j

ai

σa,i

bj

σb,j
, (8)

Fig. 1. The structure of bidirectional associative memory. When it
is applied in voice conversion, the numbers of neurons in the down-
layer and top-layer are equal to the dimension of feature vectors of
each speaker.

where σa,i and σb,j are the parameters of the model, in this paper,
we fix them to the standard deviation of corresponding random vari-
ables. We name this model as Gaussian BAM (GBAM).

The joint distribution over the two layer neurons is defined as

P (a, b) =
1

Zexp{−E(a, b)}, (9)

and Z =
∫ ∫

exp{−E(a, b)}dadb is the partition function. For
the joint variables vector v = [a�, b�]�, this p.d.f can be written in
a Gaussian-form [11] with zero mean and precision matrix

Λ = Γ−1

[
I −W

−W� I

]
Γ−1, (10)

where Γ = diag{Γ(a),Γ(b)} and Γ(a) = diag{σa,1, ..., σa,N},
Γ(b) = diag{σb,1, ..., σb,P }. Therefore, as a probability density
model, if the precision matrix Λ is positive definite, the GBAM is
equivalent to a Gaussian distribution.

The Gaussian reformulated by GBAM can model the correla-
tions between variables from different layers by W . Although the
variables in the same layer are independent of each other once the
other layer is given, the correlations in the same layer can be cap-
tured by W during the information flowing between the two layers.
Therefore, GBAM is capable of modeling the probability density of
spectral feature vectors that contain strongly correlated coefficients.

3.3. Parameter Estimation

Since we evaluate the GBAM as a probability model, different from
the standard learning algorithm for BAM, we estimate the parame-
ters under the maximum likelihood (ML) criterion. Because of the
structure relation between W and Λ in (10), the derivative over W
is calculated with the likelihood in (9) instead of the standard form
of Gaussian. So the derivative over W is written as

∂W = Γ(a)−1

(Ed[ab
�]− Em[ab�])Γ(b)−1

, (11)

where Ed[·] denotes the expectation with respect to the data distri-
bution and Em[·] denotes the expectation with respect to the distri-
bution defined by the model. CD algorithm [9] is adopted to approx-
imate the expectation over model distribution. Since the variables in
one layer are independent of each other if the variables in the other
layer are given, a Gibbs chain is run to iteratively sample data from
P (ak|bk−1) and P (bk|ak−1), which are both Gaussian distribu-
tions, at the k-th step. The Gibbs chain starts from the initial states
a0 and b0 given by the training samples.

Parameter matrix W is estimated by the gradient descent algo-
rithm as
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W (k) = W (k−1) +ΔW (k), (12)

where the update at the k-th step ΔW (k) consists of the derivative
over W (k) as well as a momentum term and a regularization ter-
m. The momentum term is added in order to accelerate the learning
speed [12], the regularization term is adopted to guarantee the posi-
tive definite of Λ. Therefore, ΔW (k) is written as

ΔW (k) = αΔW (k−1) + ρ(∂W (k) − εW (k−1)), (13)

where α, ρ, ε are the coefficients of the momentum item, learning
rate and the regularization item separately, ∂W (k) is the derivative
calculated at the k-th step.

3.4. System Construction

We propose to directly model the distribution of joint spectral en-
velope space by using GBAMs instead of Gaussians. The variables
in the down-layer and up-layer are corresponding to the source part
and target part of the joint space. The training of GBAM is very time
consuming, so it is infeasible to directly train a mixture of GBAMs
with the expectation maximization (EM) algorithm. Therefore, the
joint space is divided into several sub-spaces, and each sub-space is
modeled by a GBAM. In this paper, we use a GMM to divide the
joint space. Since it is difficult to train a GMM directly on the spec-
tral envelope space, a JDGMM is estimated on the joint high-level
spectral feature space, and the joint spectral envelope is assigned to
the sub-space that has the maximum posterior probability of gener-
ating the corresponding high-level spectral feature. The training data
in each sub-space are normalized to zero mean before they are used
to estimate the parameters of GBAM. So the parameter set for the
m-th sub-space is given by

θm = {ηm,Γm,Wm}, m = 1, · · ·M, (14)

where ηm and Γ2
m are the mean vector and diagonal covariance ma-

trix of the training data in the m-th sub-space, and Wm is the weight
matrix of the GBAM in the same space.

At conversion stage, the GBAM is treated exactly as a Gaussian
distribution. For the m-th sub-space, given a source spectral enve-
lope feature vector Xt, the conditional distribution of target spectral
envelope is N(Yt;η

(y|x)
m ,Γ

(y)2

m ), where

η(y|x)
m = η(y)

m + Γ(y)
m W�

mΓ(x)−1

m (Xt − η(x)
m ). (15)

Then the static spectral envelope feature sequence is generated in a
way similar to the procedure in the GMM-based method.

Though RBMs can also model the joint spectral envelope for
VC [8], the relationship between the source and the target spectral
envelope feature vectors are captured through the hidden variables.
As the states of hidden variables are unknown at the conversion
stage, the conversion performance closely relies on the initialization
of target nodes. But in the proposed method, there is no hidden layer
and the converted spectral vectors can be generated directly .

4. EXPERIMENTS

4.1. Experimental Conditions

A Chinese speech corpus with a female and a male speakers was
adopted to build a female-to-male conversion. Waveforms are
recorded in 16kHz/16bit format. 100 parallel utterances were used

Fig. 2. Average log likelihoods on the training and test sets when
modeling spectral envelope using GMM-based model and GBAM-
based model.

in our experiments. 80 utterances were randomly chosen as the
training set, and the remaining 20 utterances were used for testing.

Spectral envelope features were extracted by STRAIGHT [13]
analysis. The number of FFT points was 1024, which lead to a 513-
dimensional spectral envelope. 40-order mel-cepstra (excluding the
0-th coefficient) were extracted from spectral envelopes as spectral
features for GMM modeling. The dynamic time align (DTW) algo-
rithm was used to align the mel-cepstrum sequences of source and
target speakers. Spectral envelopes were aligned using the aligning
information of the corresponding mel-cepstra.

In the training of GBAMs, one-step Gibbs sampling was applied
in the CD algorithm. The batch size was set to 10. The initial value
of W was zero. The learning rate ρ and regularization coefficients ε
were set to 0.00005 and 0.03 respectively. The learning procedure s-
tarted with the momentum of 0.5 and changed to 0.9 after 5 epoches.

4.2. Results and Analysis

We built the following systems to evaluate the performance of the
proposed method1:

a) GMM-MCEP: The conventional JDGMM-based method.
Mel-cepstra were used as the spectral features;

b) GMM-MCEP-GV: Considering GV at parameter generation
in GMM-MCEP system. GV is the well-known method to
address the over-smoothing problem in VC;

c) GBAM-SPE: The proposed method in this paper;

d) GMM-SPE: A single Gaussian distribution with diagonal co-
variance matrix was adopted to model the spectral envelope
distribution in each sub-space.

First, the average log likelihoods with different number of sub-
spaces were evaluated on both the training and test sets to compare
the modeling ability between GBAMs and Gaussians. From Fig.2,
we can see that the likelihoods of GBAMs are significantly larger
than those of Gaussians with diagonal covariance matrices. This
verifies that GBAM does better in modeling spectral envelope.

1Some speech examples converted by these systems can be found
at http://home.ustc.edu.cn/˜ljliu037/ICASSP2014_
GBAMVC.html.
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Fig. 3. An example of converted spectral envelopes. The spectral
envelope of GMM-MCEP system was obtained by recovering from
the converted mel-cepstrum.

Fig.3 shows an example of target spectral envelope as well as
the corresponding ones converted by GMM-MCEP, GMM-SPE, and
GBAM-SPE systems. The maximal values of those spectral en-
velopes are normalized to 1, and the envelopes are presented in log-
scale. We can see that the envelopes converted by GMM-SPE and
GMM-MCEP are almost the same and both are over smoothed, while
GBAM-SPE generates the local spectral characteristics of the target,
e.g.circle (a), (b), (c), benefiting from the ability of modeling the
full dimensional relationship between source and target spectral en-
velope feature vectors. However, this leads to a larger log spectral
distortion(LSD) compared with GMM-based systems as shown in
Table1. This is reasonable because the local characteristics of the
spectra reconstructed by GBAM-SPE may not always be close to
those of the nature ones while the spectra converted using GMM-
based approaches stay around the mean vectors of the Gaussians
representing marginal probability density functions of the target s-
peaker.

When the mixture number got larger than 128, the training data
in some sub-spaces became sparse that GBAMs couldn’t be trained.
But the informal listening test showed that speech converted by
GMM-based systems got no significantly improvement, we fix the
mixture number to 128 for all the systems in the subjective tests.

We conducted mean opinion score (MOS) tests to evaluate
speech naturalness and similarity among GBAM-SPE system,
GMM-MCEP system and GMM-SPE system. All the twenty sen-
tences in the test set were used as the evaluation set. The number
of listeners was seven. The evaluation results presented in Fig.4
demonstrate that the conversion performance of GBAM-SPE is
better than that of GMM-MCEP and GMM-SPE.

Table 1. Average log spectral distortions(dB) for different systems.
The spectral envelopes of GMM-MCEP, GMM-MCEP-GV systems
were recovered from the converted mel-cepstra before LSDs were
calculated.

GMM- GMM-SPE GMM- GBAM
MCEP MCEP-GV -SPE

LSD(dB) 4.57 4.61 5.16 5.05
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Fig. 4. Mean opinion scores of speech quality and similarity. Error
bars show 95% confidence interval.

In order to investigate the performance on alleviating the over-
smoothing problem by the proposed method, a preference test was
taken to compare GBAM-SPE with GMM-MCEP-GV. GV was not
considered in the GBAM-SPE system because we found it had no
promoting effect on spectral envelope modeling. Results in Fig.5
indicate that listeners tend to prefer the voice converted by GBAM-
SPE system. The p-values show an statistically significant difference
between the systems on both speech naturalness and similarity and
confirm the superiority of GBAM-SPE in voice conversion. Through
Table.1 we can see that GBAM-SPE outperforms GMM-MCEP-GV
consistently with 0.11dB lower spectral distortion though they both
cause a larger distortion than GMM-SPE.

0% 20% 40% 60% 80% 100% 

Naturalness 

Similarity 

preference percentage (%) 

GMM-MCEP-GV No difference GBAM-SPE 

Fig. 5. Preference scores of GMM-MCEP-GV and GBAM-SPE on
speech naturalness and similarity. The p-value of the t-tests are 8.3×
10−7 and 3.2× 10−7 on naturalness and similarity respectively.

5. CONCLUSION

In this paper, we proposed a new approach to model the spectral
envelope. Two-layer feedback neural networks, BAMs, were refor-
mulated to represent the Gaussian distributions in GMM, in order to
capture the strongly cross-dimensional correlations in the high or-
der spectral envelopes. CD algorithm with 1-step Gibbs sampling
was used to estimate the parameters of BAMs. The likelihood com-
parision between GBAMs and Gaussians with diagonal covariances
indicated that GBAMs outperformed in describing the probability
distribution of the joint spectral envelope space. Subjective evalua-
tions showed that the speech naturalness and similarity could be sig-
nificantly improved. As only a female-to-male conversion was con-
ducted in this paper, we will examine the performance of GBAMs
on other speaker pairs in the future.
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