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ABSTRACT

Recursive word topology structure is commonly found in
natural language sentences, and discovering this structure can
help us to not only identify the units that a sentence contains
but also how they interact to form a whole. In this paper, we
explore a novel recursive neural network (RNN) based word
topology model (WordTM) for hierarchical phrase-based
(HPB) speech translation, which captures the topological
structure of the words on the source side in a syntactically
and semantically meaningful order. Experiments show that
our WordTM significantly outperforms the state-of-the-art
soft syntactic constraints.

Index Terms— recursive neural network, word topology
model, hierarchical phrase-based speech translation

1. INTRODUCTION

Hierarchical phrase-based (HPB) translation model [1, 2]
with synchronous context free grammar has provided many
attractive benefits in expressing translation knowledge, and
effectively maintained the strengths of the phrase-based [3]
translation model. However, it only uses the hierarchical rules
that span any string of words in the source side input sentence,
and does not normally use any syntactic information derived
from linguistic knowledge or treebank data [4].

Consider the translation pair in Fig. 1 with the listed hi-
erarchical rules in Fig. 2 and parts of the derivation trees in
Fig. 3. Although the correct and incorrect derivations can be
generated from the hierarchical rules, their topological struc-
tures of the words are quite different on the source side, and
the word topology structure under the correct rule derivation
seems more reasonable and meets the syntactic constraints.
This difference in word topology structure is useful to dis-
tinguish the correct translation assumptions but has not been
considered by current HPB translation system yet.

The max-margin based recursive neural network (RNN)
[5, 6] has successfully parsed natural language words based
on deep learned semantic transformations of their original
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Fig. 1. Example of Chinese-English translation pair.

Fig. 2. Examples of hierarchical rules extracted from corpus.

features, and outperforms state-of-the-art approaches. It dis-
covers the hierarchical word structure in natural language us-
ing a recursive paradigm, which is a kind of common phe-
nomenon in HPB translation, and we believe this is also help-
ful to capture the words topology structure and distinguish the
correct translation assumptions for HPB speech translation.

In this paper, we adapt and extend the max-margin based
RNN into HPB translation with force decoding and convert-
ing tree, and propose a RNN based word topology model
from the source side to capture the topological structure of
the words and solve derivation problem for our HPB speech
translation SimuTalk1 system. We map the words into the
vector semantic representations, and then merge the words
into phrases in a syntactically and semantically meaningful
order for capturing the word topology structure on the source
side. As show in Fig. 3, we assume that the word topology
structure under the correct rule derivation tree, which gener-
ates correct translation result, are more agree with syntacti-
cally and semantically meaningful word merging order.

Similar researches have been done to introduce linguistic
commitment for HPB translation. [4] and [7] introduced soft
syntactic constraints based on parses of the source language

1http://s2s.ia.ac.cn/speechtrans/
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Fig. 3. The derivation trees which lead to correct and incorrect translation results on the source side.

to reward hierarchical rules that were respected with syntactic
categories, while [8] constrained the application of hierarchi-
cal rules to respect in the target language syntax. Compared
with them, our approach is simple and effective, which cap-
tures not only syntactic but also semantic commitment.

2. RECURRENT NEURAL NETWORK BASED
WORD TOPOLOGY MODEL (WORDTM)

2.1. Model Description

Our WordTM is used to capture the topological structure
of the words in the source side sentence using a recursive
paradigm, as show in Fig. 3. Using the word semantic rep-
resentations as input, our WordTM computes (i) a score that
is higher when neighboring words should be merged into a
phrase, (ii) a new semantic representation for this phrase,
and (iii) class label of the phrase types, such as NP or VP.
WordTM is trained so that the score is high when neighboring
word/phrase has the same class label. After words with the
same label are merged into phrase, neighboring phrases are
merged to form a longer phrase or a full sentence recursively
in a syntactically and semantically order. These merging de-
cisions implicitly define a tree structure in which each node
has associated with it the RNN outputs (i)-(iii).

Semantic Representation. We map words to a vector
representation in a similar ways as [9] using the Chinese cor-
pus. These word representations are stored in a word embed-
ding matrix L ∈ Rn×|V |, where |V | is the vocabulary size
and n is the semantic space dimensionality. The operation to
retrieve the ith word’s semantic representation can be seen as
a projection layer where we use a binary vector ek which is
zero in all positions except at the kth index,

xi = Lek ∈ Rn (1)

Merging Decision. Given two word vector semantic rep-
resentations, the goal of our WordTM is twofold using the

Fig. 4. An example binary tree with a simple RNN. The same
weight matrix is replicated and used to compute all non-leaf
node representations.

merging decision recursively. Firstly, we computes a new vec-
tor representation of the phrase which would combine the two
word vector representations. The merging decision is defined
as triples (p → c1c2). As in Fig. 4, each such triplet de-
notes that a parent node p has two children nodes and each
children node ck can be either an input node xi or a nonter-
minal node yj in the tree. We restrict the RNN to two layers,
where output layer has the same dimensionality as each input
vector in input layer. The RNN computes the potential parent
representation for these possible child nodes as

p = sigmoid(W [c1; c2] + b) (2)

Secondly, we scores how likely this is a correct phrase.
We compute a local score of this merging decesion using a
simple inner product with a row vector W score ∈ R1×n as

s = W scorep (3)

Class Label. We leverage distributed representation p by
adding to each RNN parent node (after removing the scoring
layer) a softmax layer to predict class labels, such as NP or
VP, labelp = softmax(W labelp) (4)

Max-Margin Learning. We formulate a global, regular-
ized risk objective in a max-margin framework [5, 6] for pa-
rameter learning. Let the training data consist of (sentence,
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tree) pairs: (xi, yi). We denote the set of all possible binary
merging trees that can be constructed from an input sentence
as A(xi). We want to maximize the following objective

J =
∑
i

s(xi, yi)− max
y∈A(xi)

(s(xi, y) + ∆(y, yi)) (5)

where the structure loss ∆ penalizes trees more when they
deviate from the incorrect tree.

For different trees of the source-side current translation
sentence, we compute the total score of each tree as the sum
of scores of each collapsing merging decision

s(xi, yi) =
∑

d∈T (yi)

sd(c1, c2) (6)

This sum score is our word topology feature which is used to
judge the source-side word topology structure. The trees with
higher scores are more agree with syntactically and semanti-
cally meaningful order.

A span is a pair of indices which indicate the left and right
most leaf nodes under a node in the tree. Let T (yi) denote
the set of spans coming from all nonterminal nodes of the
tree. We choose as our loss function a penalization of incor-
rect spans and add a penalization term λ2 to each incorrect
decision ∆(y, yi) =

∑
d∈T (y)

λ1d /∈ T (yi) (7)

2.2. Parameter Estimation

Our objective J is not differentiable due to the hinge loss.
Therefore, following [5, 6], we will generalize gradient ascent
via the sub-gradient method which computes a gradient-like
direction called the sub-gradient. For any of our parameters
(W , W score, W label ), such as W , the gradient becomes:

∂J

∂W
=

∑
i

∂s(xi, yi)

∂W
− ∂s(xi, ymax)

∂W
(8)

For each source sentence in HPB translation, finding the
highest scoring binary merging tree quickly and accurately
(including the penalization) can be achieved with the follow-
ing two steps: force decoding and converting tree.

Force Decoding. First, following our previous work [10],
we introduce a force decoding to obtain the rule derivation
trees by taking the translation pairs from the bilingual corpus.
In this way, the source and target sentences are considered
to be the input and output sentences for the translation task.
The rule derivation trees on both sides are synchronously con-
structed from bottom to top as a CKY parser. We use the same
features as in [2], except the LM feature, as all of the trans-
lation assumptions in force decoding are the same with the
target sentence in the bilingual corpus. Thus, during decod-
ing, each node in the derivation trees is generated only if the
translation sentence fragment is exactly matched with the tar-
get side. When it has reached the top of the derivation tree,
the derivation tree of hierarchical rules can be obtained during
trace back, and we only trace the top-7 rule derivation trees.

Fig. 5. Example of derivation tree with the hierarchical rules
in Fig. 2.

Fig. 6. Example of converting the derivation tree in Figure 5
into a binary tree for WordTM.

Fig. 5 illustrates the force decoding processes that obtain
one of the rule derivations with hierarchical rules for the sen-
tence pair in Fig. 1. The nonterminal symbols on the target
side of hierarchical rules have been replaced by the transla-
tion assumptions. The derivation tree on the left is generated
when the translated sub strings on the target side.

Converting Tree. Second, we would further convert the
rule derivation tree on the source side into a binary tree for
WordTM, then get the detail training samples for WordTM.
Note that the grammar (merging decision) in RNN is not con-
text free and only consists of the glue rule X → XX . So this
step is necessary for our WordTM learning.

Fig. 6 shows how to convert the rule derivation tree into a
binary tree for WordTM. In our experiments, we define three
following operations for converting tree,

1. For glue rule S, we consider it has the same operation
with the merging decision.

2. For the hierarchical rule which has one nonterminal, we
also consider it is same to the merging decision, such as
the rule r1 in Figure 2. “uÐ X1” is merge by “uÐ”
and “X1 (¥I�²L)”.

3. For the hierarchical rule which has two nonterminals,
such as the rule r2, we consider it is consisted by two
merging decisions. We merge “�” (terminal) and “X2

(²L)” (the right nonterminal) into “�X2 (�²L)”
firstly§and then merge “�X2 ” and “X1 (¥I)” into
“X1�X2 (¥I�²L)”. Note that there is another
hierarchical rule which has two nonterminals, such as
“� X1 k X2” [2]. We first merge “� X1” and “k
X2” respectively, and then merge “� X1k X2”.

2As in Socher et al. (2011), a value of 0.05 was used for λ.
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Fig. 7. Results on the development set with different dimen-
sionality of semantic representation.

3. EXPERIMENTS AND RESULTS

3.1. Experimental Setup
We conduct experiments on the following Chinese-English
speech translation task. Our development set is IWSLT 2005
test set (506 sentences), and our test set is IWSLT 2007 test set
(489 sentences). The bilingual corpus is the Chinese-English
part of Basic Traveling Expression corpus and China-Japan-
Korea corpus, which contains 0.387M sentence pairs with
3.5/3.82M Chinese/English words. The LM training corpus
is from the English side of the bilingual data.

The word semantic representation embedding matrix is
trained on Chinese side of the bilingual corpus. Our vocabu-
lary consists of all words that occurred more than twice in the
corpus, remaining words are mapped to an unknown word.

The baseline system is following the same constrains as
in [2]. In the contrast experiments, we add our word topology
feature, the sum of scores of each collapsing merging deci-
sion in different source-side rule derivation tree of the current
translation sentence, and this feature is combined into a stan-
dard log-linear model [11].

The LM are trained using the SRILM toolkit with mod-
ified Kneser-Ney smoothing. We perform pairwise ranking
optimization (PRO) [12] to tune feature weights on the devel-
opment set, and evaluate the translation quality using case-
insensitive BLEU-4 score [13].

3.2. Experimental Results
Fig. 7 shows that different dimensionality of semantic rep-
resentation affects the performance of WordTM, and 100-
dimensional semantic representation gets the best perfor-
mance. We use 100 dimensionality semantic representation
for the next experiments.

Table 1 presents the main results on the test set. For the
contrast experiments, we introduce source-side soft syntac-
tic constraints (coarse and fine-gained features) [4] based
on parses of the source language to reward hierarchical
rules. The results show that adding word topology feature
(+WordTM) is useful to distinguish the correct translation
assumptions on the source side and significantly better than
the baseline features, with an increase of 0.91 BLEU points.
Compared with the state-of-the-art soft syntactic constraints
(“+syntax (coarse)” and “+syntax (fine)”), our WordTM is

Features Dev Test
Baseline 51.94 40.62
+syntax (coarse) 52.58 41.17∗

+syntax (fine) 52.65 41.23∗

+WordTM (100 dimensionality) 53.01 41.53∗∗

Table 1. Results on the test set, and the improvements are
statistically significant by the bootstrap resampling [14]. *:
significantly better than the baseline (p < 0.05), **: signifi-
cantly better than “soft syntactic constraints” (p < 0.01).

Features Dev Test
Baseline 50.84 42.32
+syntax (coarse) 51.41 42.75∗

+syntax (fine) 51.45 42.81∗

+WordTM (100 dimensionality) 51.96 43.29∗∗

Table 2. Results with BLEU scores on the large data set. The
meaning of “*” and “**” are similar to Table 1.

more simple (without syntactic parses) and effective (with an
increase of 0.36/0.30 BLEU points over coarse/fine-gained
features).

3.3. Large Data Set
We also conduct experiments on a larger bilingual corpus,
which is partly used in our SimuTalk system. The larger bilin-
gual corpus are collected from web data (such as, the bilingual
subtitles in shooter, and the example bilingual sentence pairs
in Jinshan, Baidu and Youdao Dictionary), which contains
4.3M parallel sentences pairs with 53/55M Chinese/English
words, and they are most relevant to the spoken language do-
main. Similarly, the LM training corpus is from English side
of the bilingual data, and the word semantic representation
embedding matrix is trained on Chinese side of the bilingual
corpus with 100 dimensionality.

The final BLEU score results are shown in Table 2. In the
scenario with a large data set, our WordTM still significantly
outperforms the state-of-the-art soft syntactic constraints.

4. CONCLUSIONS

In this paper, we adapt and extend the max-margin based
RNN into HPB translation with force decoding and convert-
ing tree, and propose a RNN based word topology model
for our HPB speech translation SimuTalk system, which suc-
cessfully captures the topological structure of the words on
the source side in a syntactically and semantically meaning-
ful order. Experiments show that our WordTM significantly
outperforms the state-of-the-art soft syntactic constraints for
HPB translation. In the future, we will extend our RNN based
word topology model into the target side, and captures both
source- and target-side words topology structure, as to further
improve the performance of our HPB speech translation.
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