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ABSTRACT

We present a semi-supervised algorithm for rescoring the output of

a speech keyword search (KWS) system. Conventional loss func-

tions such as squared-error and logistic loss are not suitable for

optimizing the commonly-used KWS term-weighted value (TWV)

performance metric. We derive a novel concave modified logistic

log-likelihood function which lower-bounds TWV. We then use a

manifold-regularized kernel classifier that maximizes this lower-

bound. A manifold regularization term in our objective function

uses available unlabeled speech data and makes our approach semi-

supervised. This term is particularly useful for KWS in low-resource

languages and ensures that the predicted keyword confidence scores

are smooth on a low-dimensional manifold in the feature space. We

conduct KWS experiments on the IARPA Babel Vietnamese task and

show performance improvements in terms of the maximum TWV

(MTWV). Our estimated confidence score is complementary with

respect to the ASR posterior score and gives MTWV improvement

upon interpolation with it.

Index Terms— Keyword search, term-weighted value, kernel

methods, manifold regularization, semi-supervised learning.

1. INTRODUCTION

Keyword search (KWS) from speech is an information retrieval task

that involves finding all possible locations of a given query term in a

large speech data set. State-of-the-art KWS systems first decode the

speech data set into word lattices using an automatic speech recog-

nition (ASR) system. These word lattices are then converted into a

finite state transducer (FST) index [1, 2] that stores the temporal lo-

cations and ASR posterior scores of all possible sequences of words

(factors) in the lattices. The test-time input query term is then com-

posed with this FST index to generate all putative keyword hits with

their ASR posterior scores and time locations.

The quality of the ASR posterior score is often variable and de-

pends on several factors. For example, out-of-vocabulary (OOV)
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queries are more likely to have unreliable posterior scores as com-

pared to in-vocabulary (IV) queries because they are not part of the

ASR system’s vocabulary. Several works have focused on detect-

ing and dealing with OOVs in KWS systems [3–6]. Longer queries

post similar problems to the KWS system. Hence, the focus of this

paper is on finding a complementary confidence score for KWS by

rescoring the set of hits generated by the KWS system.

Our contributions in this paper focus on two salient characteris-

tics of modern KWS systems. First, large-scale competitive evalua-

tions such as STD-2006 [7] from NIST and the recent IARPA Babel

program [8] use the term-weighted value (TWV) as a performance

metric for KWS. Consider a query list Q and a detection threshold θ
on the confidence scores of the retrieved hits. Then the TWV at θ is

TWV (θ) = 1 −
1

|Q|

X

T ∈Q

“

PMiss(T , θ) + βPFA(T , θ)
”

(1)

where β = 999.9, and the miss and false alarm probabilities for a

query term T are

PMiss(T , θ) = 1 −
NCorrect(T , θ)

NRef(T )
and (2)

PFA(T , θ) =
NSpurious(T , θ)

TAudio − NRef(T )
. (3)

Here NCorrect(T , θ), NSpurious(T , θ), and NRef(T ) are the number of

correctly detected, spurious, and true occurrences of the term T in

the TAudio second long audio data set. TWV thus weights false alarms

and misses unequally. It is also more sensitive to misses on impor-

tant rare queries such as proper nouns. Previous works on rescor-

ing KWS system outputs do not consider TWV in their learning

framework. Norouzian et al. [9, 10] use a squared-error loss func-

tion and perform hit classification instead of predicting a confidence

score. Tu et. al [11] use a support vector machine classifier with

various acoustic and linguistic features for re-ranking the hits. Lee

et. al [12, 13] don’t use an explicit discriminative loss function for

learning the confidence scores but perform a random walk over an

acoustic similarity graph with hits as nodes.

The second key feature of modern KWS systems is the avail-

ability of large amounts of unlabeled speech data. This is especially

the case for low-resource languages such as Vietnamese, where the

amount of data labeled with correct/incorrect hits is significantly less

compared to a resource-rich language such as English. Nourozian

et. al [9] present a manifold-regularized kernel least squares clas-

sifier for dealing with this challenge. Their approach is motivated

from the fact that the hit features lie on a low-dimensional manifold

in an otherwise high-dimensional space. However, they use a least

squares classifier and don’t directly estimate hit confidence scores.

This paper makes the following contributions in view of the

above two features of modern KWS systems:
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• TWV Lower-Bound: We propose a novel concave logistic

lower-bound to the TWV in Section 3.

• Manifold-regularized TWV Logistic Regression: We use

the above TWV lower-bound to learn a manifold-regularized

kernel logistic regression classifier for predicting hit confi-

dence scores in [0, 1].

The next section sets the mathematical notation and introduces

the standard kernel logistic regression [14]. We then derive our lo-

gistic lower-bound to the TWV in Section 3. Section 4 describes

the Babel Vietnamese data set, the KWS system used in our exper-

iments, and our computation of the kernel function using acoustic

features extracted from the audio. We discuss our KWS results in

Section 5 and conclude the paper in Section 6.

2. BACKGROUND ON MANIFOLD-REGULARIZED

KERNEL LOGISTIC REGRESSION

This section recasts the conventional kernel logistic regression for-

mulation [14] to our KWS problem. Consider a given query T from

a query list Q. Let the KWS system return NHit(T ) hits in response

to this query. Without loss of generality, let the first l(T ) ≤ NHit(T )
hits be labeled with yi = 1 or 0 for correct or incorrect hits respec-

tively. The remaining u(T ) = NHit(T ) − l(T ) hits are unlabeled.

In a typical KWS setting, queries belong to the training set have all

labeled hits while those at test time have all unlabeled hits.

Let each hit i for the query T have an associated d-dimensional

feature vector xi, such as acoustic-prosodic features from the audio

corresponding to hit i. Let a non-negative definite, Hermitian sym-

metric (Mercer) kernel function K : R
d × R

d → R compute the

similarity between two feature vectors. Then K gives rise to a re-

producing kernel Hilbert space (RKHS) [15] HK . The task of our

learning problem is to estimate a function f : R → R in the RKHS

HK that predicts the log-odds ratio of a given hit being correct. The

logistic sigmoid transformation of f(xi)

σ(f(xi)) = [1 + e−f(xi)]−1
(4)

thus estimates the probability P (hit i correct). Kernel logistic re-

gression estimates this function f by maximizing the log-likelihood

of the labeled hits over all queries in Q

f∗ = arg max
f∈HK

1

|Q|

X

T ∈Q

l(T )
X

i=1

n yi

l(T )
log

“

σ(f(xi))
”

+
(1 − yi)

l(T )
log

“

1 − σ(f(xi))
”o

(5)

where yi ∈ {1, 0} is the correct/incorrect label of the hit. We re-

fer to the log-likelihood function in (5) as L(f). The above opti-

mization problem does not use the unlabeled hits for estimating f∗.

Belkin, Niyogi, and Sindhwani [16] have however proposed includ-

ing a manifold regularization term over both labeled and unlabeled

data in the objective function in (5). This term becomes

M(f) =
1

|Q|

X

T ∈Q

1

NHhit(T )2

NHit(T )
X

i,j=1

“

f(xi) − f(xj)
”2

W (xi,xj)

(6)

for our KWS setting. It is motivated from manifold learning that as-

sumes the feature vectors xi to lie on a low-dimensional manifold

embedded in R
d. Each hit lies at a vertex of an undirected graph

on this manifold with edge weights W (xi,xj). In our KWS for-

mulation, minimizing this manifold smoothness penalty forces hits

with close feature vectors xi and xj (i.e. with high edge weight

W (xi,xj)) to have similar values of the confidence score f . The

overall manifold-regularized optimization problem thus becomes

f∗ = arg max
f∈HK

n

L(f) − γ1||f ||
2
K − γ2M(f)

o

(7)

where ||f ||K is the norm of f induced by the ambient inner product

in the RKHS, and γ1,γ2 are non-negative real numbers. The rep-

resenter theorem [16] converts the optimization problem in (7) to a

problem of finding the optimal linear combination of kernel func-

tions in a
h

P

T ∈Q
NHit(T )

i

-dimensional space.

Our key focus for the next section will be the logistic log-

likelihood function L(f) in (5). We immediately note that it is very

different from the TWV function in (1). We thus propose a novel

lower-bound to the TWV function in the next section.

3. LOGISTIC LOWER-BOUND ON THE TWV FUNCTION

We begin our derivation by relating the TWV function with the lo-

gistic loss by re-writing the former. Consider a given query term T
and threshold θ on the predicted confidence score. Then

NCorrect(T , θ) =

l(T )
X

i=1

yiI(σ(f(xi)) ≥ θ) and (8)

NSpurious(T , θ) =

l(T )
X

i=1

(1 − yi)I(σ(f(xi)) ≥ θ)

= a(T ) −

l(T )
X

i=1

(1 − yi)I(σ(f(xi)) < θ) (9)

where a(T ) is a term independent of f and I(.) is the indicator func-

tion. The inequalities within the indicator function can be re-written

in terms of f using (4):

σ(f(xi)) ≥ θ ⇐⇒ f(xi) ≥ log
“ θ

1 − θ

”

= c . (10)

We now lower-bound the non-differentiable, non-convex indicator

function I(f(xi) ≥ c) using the following inequalities as depicted

in Figure 1:

I(f(xi) ≥ c) ≥ log(σ(f(xi) − c)) and (11)

I(f(xi) < c) ≥ log(1 − σ(f(xi) − c)) . (12)

The above bounds give the following bounds on the number of cor-

rect and spurious hits of the term T :

NCorrect(T , θ) ≥

l(T )
X

i=1

yi log(σ(f(xi) − c)) and (13)

NSpurious(T , θ) ≤ a(T ) −

l(T )
X

i=1

(1 − yi) log(1 − σ(f(xi) − c)) .

(14)
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Fig. 1. This figure shows the indicator functions I(f(x) ≥ c) and

I(f(x) < c) with their logistic lower-bounds in (11) and (12) for

c = 2.5. We have added log(2) to the bounds to ensure that they

touch the indicator functions at f(x) = c.

Hence the miss and false alarm probabilities are upper-bounded as:

PMiss(T , θ) ≤ 1 −
1

Nref(T )

l(T )
X

i=1

yi log(σ(f(xi) − c)) and

(15)

PSpurious(T , θ) ≤ a(T ) −
1

TAudio − NRef(T )

l(T )
X

i=1

(1 − yi)×

log(1 − σ(f(xi) − c)) . (16)

Substituting the above bounds in the TWV expression (1) gives us

the following logistic lower-bound on TWV:

TWV (T , θ) ≥
1

|Q|

X

T ∈Q

l(T )
X

i=1

n yi

NRef(T )
log

“

σ(f(xi) − c)
”

+
β(1 − yi)

TAudio − NRef(T )
log

“

1 − σ(f(xi) − c)
”

− βa(T )
o

. (17)

We can now compare the above lower-bound on TWV with the stan-

dard kernel logistic regression objective function in (5). There are

two key differences. First, the TWV lower-bound weights the yi = 1
and yi = 0 terms unequally, as compared to the equal weight of

1/l(T ) in (5). These unequal weights reflect the relative importance

of misses and false alarms in the TWV function. Second, we observe

that the detection threshold θ appears through c in (17) compared to

the default θ = 0.5 or c = 0 in the standard kernel logistic regres-

sion log-likelihood function.

Maximizing the TWV logistic lower-bound in (17) gives us the

following kernel logistic regression optimization problem for TWV:

f∗ = arg max
f∈HK

1

|Q|

X

T ∈Q

l(T )
X

i=1

n yi

NRef(T )
log

“

σ(f(xi) − c)
”

+
β(1 − yi)

TAudio − NRef(T )
log

“

1 − σ(f(xi) − c)
”o

. (18)

Inclusion of the manifold regularization term from (6) and the am-

bient norm of f with the representer theorem again gives a concave

optimization problem in the kernel weights α. We note that NRef(T )

and Taudio are needed for queries corresponding to all labeled hits

in the above objective function. However, this information is not

needed at test time because the estimated confidence score depends

only on the estimated α
∗ and the feature vectors for all hits used

during training. The next section describes the Babel Vietnamese

data set, our KWS system, and computation of the kernel function

between hits.

4. EXPERIMENTAL SETUP

4.1. Babel Vietnamese Data Set

Vietnamese was the surprise language of the Babel OpenKWS13

evaluation. The mono-syllabic and tonal nature of Vietnamese make

it a challenging language for automated spoken language process-

ing. Vietnamese also has many regional dialects with subtle dif-

ferences. We focused on the Vietnamese full language pack (Ful-

lLP) for experiments in this paper. The FullLP contains 20 hours of

word-transcribed scripted speech, 80 hours of word-transcribed con-

versational telephone speech, and a pronunciation lexicon. We used

an automatically-generated a list of 200 keywords for this develop-

ment data set as reported in [17]. We focused on the test audio reuse

(TAR) scenario where the KWS system is allowed to re-process the

test audio after the keyword hits are returned.

4.2. Speaker-Adapted Deep Neural Network ASR and FST-

based KWS System System

We used a similar speaker-adapted (SA) deep neural network (DNN)

ASR system as described in [18] for Cantonese. The system uses

a baseline Gaussian mixture model-hidden Markov model (GMM-

HMM) system trained using a standard pipeline in IBM’s Attila

toolkit [19]. The first DNN training stage minimizes the cross-

entropy between the quinphone context-dependent HMM state

targets and the output layer activations of the neural network us-

ing backpropagation [20]. The DNN model is finally trained with

the state-level minimum Bayes risk (MBR) criterion with a dis-

tributed implementation [21] of Hessian-free optimization. We use

the trained DNN with 3000 softmax output quinphone HMM states

in a hybrid configuration [22].

We used a two-pass implementation [23] of the weighted FST

audio indexing and search algorithm in [1]. The system uses two

indices - a word index for in vocabulary (IV) queries and a phonetic

index for OOV queries. The output of the KWS system is a post-

ings list which contains a list of hits for each query keyword, the

associated ASR posterior score, start time, and end time.

4.3. Kernel Function Computation

Our kernel machine framework in (7) and Section 3 does not require

computation of a feature vector xi for each hit i due to the repre-

senter theorem [16], but the kernel function K(xi,xj) for all pairs

(i, j) of hits. We used the generalized RBF kernel

K(xi,xj) = exp
n

− D(xi,xj)
2/(2σ2

K)
o

(19)

where D(xi, xj) is the dissimilarity between hits i and j. We note

that D need not be a distance metric but K should be a valid Mer-

cer’s kernel. We address this issue later in this section.

We computed two hit dissimilarity measures for this work. The

first measure uses the hit audio and is the normalized dynamic time

warping (DTW) mean squared error between perceptual linear pre-

diction (PLP) feature vector sequences for the two hits. We extracted
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13-dimensional PLP coefficients over 25 msec frames with 10 msec

shift from the audio using Kaldi’s [24] feature extraction tool. We

then aligned the PLP sequences from the two given hits using DTW

and found the total squared-error cost of the best alignment path.

We then normalized this cost by the length of the diagonal of the

cost matrix and divided the resulting score by the feature dimension

13. Let us represent the resulting dissimilarity score between hits i
and j as DDTW(xi,xj)

2.

The second hit dissimilarity measure assigns higher similarity

to hits belonging to the same query as compared to different queries.

We define

DClique(i, j)
2 =



0 ; if i and j belong to the same query

ζ ; otherwise
(20)

where ζ > 0 is a tunable parameter. Setting ζ → ∞ assigns infinite

dissimilarity to hits belonging to different queries. Hence the kernel

optimization problem splits into many disjoint optimization prob-

lems over each query term. Setting ζ = 0 removes any distinction

between hits belonging to different queries in the learning algorithm.

We compute the kernel function K(xi,xj) using the above two

hit dissimilarity functions as

K(xi, xj) = exp

(

−[DDTW(xi,xj)
2 + DClique(i, j)

2]

2σ2
K

)

. (21)

While an RBF kernel function using squared-Euclidean distance be-

tween vectors is non-negative definite, the above kernel using DTW

dissimilarity is not guaranteed to be so. Hence we make this kernel

matrix non-negative definite by performing its eigenvalue decompo-

sition, setting all negative eigenvalues to a small positive constant,

and reconstructing the kernel matrix. We observed only a marginal

difference between the original and reconstructed kernel matrices

because most of the large eigenvalues were positive. We next de-

scribe our KWS results and related analysis in the next section.

5. RESULTS AND DISCUSSION

We split the postings list generated by the KWS system into three

disjoint subsets of queries for training, testing, and development.

We performed 3-fold cross-validation by labeling hits from one set

as correct/incorrect (the training set), and using the other two sets

without any labels (the testing and development sets) in our learn-

ing framework. We fixed the RBF kernel standard deviations for

the graph weight matrix W and kernel matrix K to 0.5. We var-

ied the weights of the two regularization terms (γ1 and γ2) over

{0, 1e−5, 1e−4, 1e−3, 1e−2, 1e−1, 1} and clique dissimilarity pa-

rameter ζ over {0, 1, 2}. We picked the best-performing hyper-

parameter values using the development set loss function value (ex-

cluding the two regularization terms) in the learning objective func-

tion. We did not use conventional classification performance metrics

such as the F1 score or equal error rate to do this selection because

they do not measure the loss function of interest.

Table 1 lists the maximum TWV (MTWV) of the entire post-

ing list re-scored with manifold-regularized kernel logistic regres-

sion using the standard logistic regression loss (MR-LL-KLR) and

the proposed TWV approximation (MR-TWV-KLR). We used the

popular sum-to-one (STO) normalization [17] of the posting list be-

fore evaluation. We observe a 4.8% increase in MTWV after using

the TWV loss.

We then further analyzed the benefit of the posting list re-scored

by MR-TWV-KLR by evaluating the MTWV after interpolation with

Rescoring System MTWV

Manifold-regularized logistic loss 0.2788
kernel logistic regression (MR-LL-KLR)

Manifold-regularized TWV loss 0.2913
kernel logistic regression (MR-TWV-KLR) (+4.8%)

Table 1. This table shows the MTWV of the manifold-regularized

kernel logistic regression system using the standard logistic loss and

the proposed TWV loss on the Vietnamese development data set.

N0(T ) MTWV

0 0.3551 (+1.0%)
2 0.3567 (+1.4%)
4 0.3578 (+1.8%)
6 0.3550 (+1.0%)
8 0.3521 (+0.1%)
10 0.3516 (+0%)

∞ (ASR posterior) 0.3516

Table 2. This table shows the MTWV of the best manifold-

regularized kernel logistic regression system using the proposed

TWV loss (MR-TWV-KLR) after mixture-of-experts interpolation

with the ASR posterior scores using (22) for different values of pa-

rameter N0(T ).

the ASR posterior scores. We implemented a simple mixture-of-

experts (MOE) interpolation scheme where the output score of a hit

i for a term T is

si(T ) = α σ(f∗(xi) − c∗) + (1 − α) p(i) (22)

where α = 0.1σ(NHits(T ) − N0(T )) , (23)

p(i) is the ASR posterior score of hit i, and N0(T ) is the number

of hits at which the MR-TWV-KLR score gets weight α = 0.05.

This MOE fusion rule gives higher weight to the MR-TWV-KLR

score for queries with more hits. Higher values of N0(T ) cause the

MR-TWV-KLR score to be emphasized only for queries with high

number of hits. Table 2 shows that the optimal N0(T ) is 4 hits.

Reducing N0(T ) reduces performance because the MR-TWV-KLR

score is being given more emphasis than is optimal for queries with

just 1 − 3 hits. Our estimate score is unreliable for such queries

because of small query-clique size in the hit similarity graph.

6. CONCLUSION AND FUTURE WORK

We presented a novel lower-bound to the popular TWV performance

metric for modern KWS systems. We then maximized this lower-

bound in a semi-supervised kernel method for rescoring a KWS sys-

tem. This in contrast to prior work which does not explicitly opti-

mize the TWV. The proposed algorithm is semi-supervised because

it uses unlabeled data through a manifold regularization term in the

objective function. Our algorithm gives a 4.8% improvement in

MTWV over a manifold-regularized kernel logistic regression base-

line. The generated confidence scores are complementary to the

ASR posterior scores and further improve their MTWV by 1.8%.

Future work should focus on deriving better lower-bounds to the

TWV, incorporating the ASR posterior scores in the kernel learning

framework, designing better hit dissimilarity measures, and extend-

ing this framework to the fusion of multiple KWS systems.
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