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ABSTRACT
This work compares ASR decoding at different subword
levels crossed with alternative keyword search strategies
to handle the OOV issue for keyword spotting in the low-
resource setting. We show that a morpheme-based subword
modeling approach is effective in recovering OOV keywords
within a Turkish low-resource keyword spotting task, where
mixed word and morpheme decoding approach outperforms
the traditional subword-based search from word-decoded lat-
tices that are broken down to subword lattices. Furthermore,
unsupervised learning of morphology works almost as well
as a rule-based system designed for the language despite the
low-resource condition. A staged keyword search strategy
benefits from both methods of morphological analysis.

Index Terms— Automatic Speech Recognition, Keyword
Spotting, Morphology

1. INTRODUCTION

Vocabulary growth is an important issue for automatic speech
recognition, resulting in the twin problems of sparse language
model training data and out-of-vocabulary (OOV) words, i.e.,
words that appear in the test data but are not seen in the train-
ing set and thus not represented in the recognizer vocabulary.
These problems are particularly pronounced in highly inflec-
tive and aggutinative languages, but they can pose challenges
for any language in the low-resource setting.

There are three types of applications that tend to have
somewhat different approaches to handling OOVs, though all
typically involve the use of sub-lexical or subword items in
the recognizer vocabulary. For open vocabulary word tran-
scription, subword items are chosen and represented in such
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a way that orthographic forms can be recovered from the se-
quence of recognized subwords. In human-computer interac-
tion and voice search, subwords are leveraged to facilitate de-
tection of OOVs. In keyword spotting or spoken term detec-
tion, subwords are used to handle search terms that are OOV.
Particularly in the open vocabulary recognition and keyword
spotting settings, the use of subwords can also help address
the data sparsity problem in language model training. In this
work, the focus is on handling OOVs in keyword spotting, but
it is informed by work on open vocabulary recognition.

A variety of methods have been used for deriving sub-
words, which can be broadly classed as being based on
phones or phone n-grams, graphones, syllables, and mor-
phologically based units (possibly including bundles of mor-
phemes) that we will refer to as “morphs.” Graphones (cou-
pled phonetic and orthographic sequences) [1] and morphs
are particularly well suited to open vocabulary recogni-
tion. While some work has based the vocabulary entirely
on morphs (see [2, 3, 4] and references therein), other studies
obtain better results using a combination of morphs and words
in Arabic [5] and German [6]. However, a mixed word and
syllable vocabulary outperformed a mixed word and morph
vocabulary for Polish [7]. A mixed word and graphone vo-
cabulary has also been explored for English [8]. Morphs
have the potential advantage of introducing more powerful
constraints in language modeling, and several studies have
investigated novel language model structures that take ad-
vantage of morphological features in a variety of languages
[9, 6, 4, 7, 10, 2, 11, 12]. While these studies motivate our
use of morphs in this work, only standard n-grams are used
here since our focus will be primarily on the keyword search
strategies that take advantage of a mixed word and morph
vocabulary.

In keyword spotting, a standard approach for handling
OOVs is to transform a word lattice into a phone lattice when
searching for keywords [13]. Directly indexing the output of
phone recognition tends to lead to much worse results, but in
[14], it is shown that decoding with phone n-gram units out-
performs the word lattice transformation approach for OOV
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terms when a flexible segmentation is used to incorporate dif-
ferent order n-grams. Since in-vocabulary terms are best rec-
ognized with a word-based model, a staged keyword search
strategy (word-based model for in-vocabulary terms, subword
model for OOVs) is typically used.

In our study on keyword spotting, we investigate the
use of mixed unit decoding to improve keyword spotting
for OOVs, particularly focusing on the use of morph-based
subword units. This is in contrast to previous study of morph-
based keyword spotting [15], where they expand word-
decoded lattices into morphs instead of doing mixed unit
decoding. We compare two methods for obtaining morph
units in morph-only and mixed word-morph decoding, to a
word-based decoding baseline, and we leverage different key-
word search alternatives. Specifically, we look at stem and
affix bundles identified by a rule-based system designed for
our target language (Turkish) [16] and automatically-derived
morphs identified via unsupervised learning using Morfessor
[17].

This contrast is similar to some of the methods explored
in [2] for open vocabulary recognition, and we confirm their
finding that unsupervised morphology learning gives similar
results compared to the rule-based system. Further, unlike
this and other prior work which uses morphology in Turk-
ish broadcast news transcription [18, 4, 19, 2], our study in-
volves keyword spotting in conversational Turkish with min-
imal training resources (10 vs. roughly 200 hours).

2. SUBWORD-BASED DECODING

2.1. Morphological Analysis

There are many approaches for splitting words into sub-
word units or morphs; of particular interest are rule-based
morphological analyzers and unsupervised segmentation al-
gorithms. Rule-based systems typically provide linguistically
accurate morphological analyses for all words covered in the
hand-crafted rule base. However, this high accuracy is often
achieved by positing a large number of morphs; since many
of these morphs are infrequent or acoustically confusable,
they may have a detrimental effect on speech recognition
performance [20].

Unsupervised segmentation algorithms are less accurate
than rule-based systems, but they typically do not posit many
rare morphs, while still providing good coverage of new
words. However, many of the identified morphs may still be
acoustically confusable.

In this paper, we compare analyses obtained from two dif-
ferent morphological systems, leveraging their respective ad-
vantages, while minimizing their drawbacks. For the rule-
based system, we used the freely available finite-state mor-
phological analyzer TRmorph [16], which achieves high ac-
curacy, while also covering a large portion of the Turkish lex-
icon. In our training set, only 5.5% of word types could not be

analyzed. In order to avoid the problem of over-segmentation
and high acoustic confusability, we did not use TRmorph’s
full morphological analysis, but only segment the word into
a stem and the remaining affix bundle (S+AB). In addition
to providing larger morphs, this stem and affix bundle seg-
mentation also reduces the problem of morphological ambi-
guity: for 78.6% of the analyzed words the stem was uniquely
determined, while unambiguous full morphological analyses
would have been possible for only 13.9% of the analyzed
words. In the remaining cases of ambiguity, the stem with the
highest frequency across the whole training set was chosen.

Our unsupervised segmentation analysis comes from the
Morfessor algorithm [17], which has become a benchmark for
morphological segmentation. Morfessor’s selection of word-
internal segmentation is based on the minimum-description-
length principle: it tries to find a lexicon of morphs that is
both accurate and minimal. The desired degree of segmenta-
tion can be manipulated via Morfessor’s perplexity threshold
parameter, but the effect of this parameter depends strongly
on the morphological structure of the language and the size
of the training set. We used an exhaustive search over all
possible parameter values, minimizing the percentage of low-
frequency morphs.

2.2. Subword-based Vocabulary and Language Model

Mixed-unit vocabularies and language models are trained
by considering multiple segmentations of the training text:
the original word segmentation, a version with all words ex-
panded into subword units, and one with some of the words
expanded. Our vocabulary is simply the union of the units
present in any segmentation of the training data. With this
vocabulary we train trigrams on each of the segmentations
of the training data and interpolate them to obtain the final
language model. Tuning the interpolation weights requires a
segmentation of the held out development data, but no fixed
segmentation is clearly preferred, so we set the interpolation
weights to be uniform. All of our language models are tri-
grams with modified-Kneser-Ney smoothing, and are trained
with the SRILM toolkit [21]. In our preliminary experiment
results, higher order n-grams beyond trigrams did not lead to
reduced perplexity.

For the partially expanded version, we choose a set of
words to decompose that satisfy three tunable criteria. First,
all words that appear more than θ1 times in the training data
are left intact (i.e. excluded from expansion set). Leaving
frequent words intact increases the effective context for to-
kens with a frequent word in their n-gram history, and due
to their frequency, we assume that these are the whole word
units that are easiest to model. Second, no word will be in
the expansion set if any subword would appear fewer than θ2
times in the expanded text. Lastly, no word will be in the
expansion set if any subword appears in fewer than θ3 ex-
panded word types in the expanded text. The last two cri-
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teria are designed to limit unit expansion: a subword unit
that appears few times in the expanded text will be difficult
to model, while a subword unit that appears in few distinct
types does not add much generalization. A simple iterative
algorithm finds the set of words that satisfy all three criteria.
The language models used for the mixed-unit decoding exper-
iments reported in this paper are a three-way interpolation of
the word-based, partially-expanded and fully-expanded mod-
els. For the partially-expanded models, we chose thresholds
θ2 = θ3 = 5 to avoid introducing very infrequent morpheme
units, and θ1 = 500 so that roughly half of the word tokens
were left intact.

2.3. Pronunciation Modeling for Subword Units

Pronunciations for subwords are needed both for decoding
within the ASR system and for the keyword search strategy.
Since our subwords are generated from the lexicon, we have
pronunciations for all of the source words, so the primary
task is to associate parts of word pronunciations with the sub-
words. We have considered two approaches to this problem:
the first is to train a grapheme-to-phoneme system to predict
pronunciations. We follow a joint multigram approach uti-
lized by the Phonetisaurus G2P toolkit [22]. Predicting sub-
word pronunciations from G2P does have the disadvantage
that the context of the subword within the word is lost – for
example, ‘s’ word-finally in English can often be pronounced
/z/ but this is rarely the case word initially.

In order to preserve context, we also investigated a tech-
nique where the graphone alignments in the joint multigram
were mapped to the subword decompositions of each word,
thus providing a range of pronunciations for each subword.
We then took the most likely pronunciation of each subword
and used that as the pronunciation in the subword lexicon.

3. KEYWORD SEARCH USING SUBWORDS

Searching keywords in the form of subwords is essential to re-
cover OOVs. Each word can be represented by the word itself
or a subword sequence if it can be segmented. For simplicity,
we only consider one possible segmentation for each word. In
a mixed-unit decoded system, we will search both the word
and the subword sequence from the index. For multiword
keywords, their representation would be the cross product of
all the representations of each component word. In addition,
we can consider using only the stem as another representation
of a keyword. If the stem is also rare in the corpus, matching
the stem is likely to match the OOV keyword, thus reducing
the miss rates. Once the keyword representation is chosen,
searching the unit sequence in the mixed-unit index is just
like searching the multiword keywords in the word-based in-
dex, which is described below. Currently each representation
for a keyword is equally weighted for simplicity.

Our keyword search algorithm is similar to that of [23].
We create a word-based index from the lattices, tracking all
of the words that occur in the lattice, their start and end times,
and their lattice posterior probabilities. For single word key-
words, we return the list of all of the keyword occurrences,
sorted by their posterior probabilities. For multiword key-
words, we retrieve the individual words from the index in the
correct order with respect to their start and end times but dis-
card occurrences where the time gap between adjacent words
is more than 0.5 seconds. All the hypotheses of a keyword
form a posting list. The detection threshold in the list is de-
termined separately for each keyword using an empirical es-
timate of each keyword’s term weighted value (TWV) [24].
The probabilities in each keyword’s posting list are adjusted
by a keyword specific offset to enable a single, keyword inde-
pendent, detection threshold.

4. EXPERIMENTS

4.1. Evaluation Setup

We evaluate the effectiveness of various strategies for sub-
word modeling in the task of OOV handling in keyword
spotting (KWS). We conduct ASR and KWS experiments
on systems trained with the 10-hour limited language pack
(LimitedLP) of the Turkish IARPA Babel conversational tele-
phone speech data (IARPA-babel105b-v0.4, [25]). “Actual
term weighted value” (ATWV) [26] is the primary metric
for the Babel program on the keyword spotting task. In this
metric, the cost of a false alarm is relatively small and al-
most the same for each keyword, but the cost of a miss is
one over the number of occurrences of the keyword, which is
especially high for OOVs. We tune our parameters on the 10-
hour development test set using the evaluation keyword set,
and evaluate ATWV on the 5-hour eval-part1 test set for the
same set of keywords. In all our experiments, we search only
for OOV keywords (KW) using the subword-based system,
while the in-vocabulary keywords are still searched by the
word-based system for better performance. In addition to the
overall ATWV, we also report the OOV-conditioned ATWV,
where TWV for OOV keywords are averaged only within
the OOV set, so that the scale is independent of OOV rates
across different keyword sets. For the evaluation keyword
set, 1685 keywords exist in the dev set data, 387 of which
are OOVs (22.9%); 1625 keywords exist in the eval-part1 set,
452 of which are OOVs (27.8%). Around 60% of the OOV
keywords can be fully recovered by the S+AB morphs in the
training vocabulary; around 95% of the OOV keywords can
be fully recovered by the Morfessor morphs.

Our ASR system models speech using a conventional
cross-word triphone 3-state HMM system [24]. Observations
are modeled by diagonal covariance GMMs. For the limited
language pack, we build a relatively compact model using 12
mixtures in the GMMs and 1000 tied triphone states. The
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Vocab / LM Lattice Expansion KW Representation OOV ATWV Overall ATWV %OOV in Posting List
Word - Word 0 0.164 0%
Word Phone Phone 0.017 0.168 31.0%
Word MorphMorfessor MorphMorfessor 0.009 0.167 21.8%
Word MorphS+AB MorphS+AB 0.014 0.168 13.1%
Word MorphS+AB Stem 0.021 0.169 34.7%

W+MS+AB - W+MS+AB 0.043 0.174 17.8%

Table 1. Word-decoding vs. mixed-unit-decoding using regular lattices on the dev set.

features include 13-d MFCC warped with speaker-dependent
VTLN, pitch features, their deltas and accelerations, and bot-
tleneck neural network features. The baseline language model
is trigram with modified-Kneser-Ney smoothing and pruning.
The recognition is generated by a second-pass decoder with
speaker adaptation. The WER of the word-decoded system
on the development test set is 74.6%.

4.2. Results and Discussion

The word-decoded baseline system achieves 0.164 overall
ATWV, but does not handle OOVs. Following traditional
subword-based methods, we decomposed word arcs into sub-
word arcs of varying units (Table 1). Interestingly, converting
word arcs into either phones or morphs provides a similar
level of performance, although the phone-based KWS takes
much longer to search. Unsupervised Morfessor morphs
(MorphMorfessor) lead to slightly worse OOV ATWV than
affix bundled morphs (MorphS+AB), although the former al-
most doubles the OOV coverage in the posting list. Using
only stems instead of full morph sequences (MorphS+AB) as
the keyword representation almost triples the OOV coverage
in the posting list and leads to slightly better OOV ATWV.
When we decode with the mixed-unit vocabulary and lan-
guage model (W+MS+AB), performance outstrips all of the
search methods in the word-decoded system. This is because
we have more robust estimation of the units and thus better
posteriors, even though the OOV coverage in the posting list
is only half of the stem-based approach. Increasing the lattice
density also helps especially for OOVs (Table 2).

Comparing different subword units for vocabulary design
in Table 2, we find that mixed word-and-morph decoding
performs better than mixed word-and-phone decoding as the
phone unit estimate is not so robust. The performance with
unsupervised morph units is not far from that with morph
units learned from hand-crafted rules. This is partly because
the smaller morph units have higher oracle coverage of OOV
KWs (95% vs. 60%). Interestingly, staging of both morph
systems does provide a small improvement over the indi-
vidual systems (Table 3), as the larger units provide better
keyword posterior estimates, while the smaller units comple-
ment with better coverage.

The results on the dev and eval-part1 test sets are shown
in Table 3. The word-and-bundled-morph decoded system has
achieved more than 2% absolute gain in ATWV for eval-part1

Vocab / LM / KW OOV Overall %OOV in Posting List

W+MS+AB 0.053 0.177 27.9%
W+MMorfessor 0.046 0.175 42.6%

W+Phone 0.017 0.168 57.5%

Table 2. OOV/Overall ATWV with different size of subword
units using dense lattices on the dev test set.

System Dev Set Eval-part1 Set

OOV Overall OOV Overall
(1) Word 0 0.164 0 0.163

(2) W+MS+AB 0.053 0.177 0.074 0.184
(3) W+MMorfessor 0.046 0.175 0.062 0.181

Staged (1-2-3) 0.061 0.178 0.084 0.187

Table 3. ATWV on dev and eval-part1 test sets with dense
lattices. Note: (2) and (3), as in all above experiments, use
the word system (1) as a first stage.

over the original word-based system. In a subsequent run with
improved acoustic models, we noted an improvement in our
staged system (0.196 ATWV) over a word baseline (0.170).

5. CONCLUSIONS

We have shown that morph-based subword modeling is use-
ful for handling the OOV issue for keyword spotting in the
low-resource setting for a morphologically rich language, and
that including subwords in the decoding process can be more
effective than the traditional method of breaking down word-
decoded lattices into subword lattices. In this work, a mixed-
level vocabulary design and the staged keyword search strat-
egy are used to balance the confusability and coverage. Fu-
ture work may benefit from more sophisticated morphological
feature-based approaches in language modeling which would
allow us to better model long-span subword dependencies,
and better rescoring of putative subword hits in keyword post-
ing lists. In addition, we can also apply our subword modeling
approach to search in-vocabulary words as a complement to
the word-based search approach.
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